РНК-полимераза

Материал из Википедии — свободной энциклопедии
Перейти к: навигация, поиск
РНК-полимераза из клетки T. aquaticus в процессе репликации. Некоторые элементы фермента сделаны прозрачными, и цепи РНК и ДНК видны более отчётливо. Ион магния (жёлтый) располагается на активном участке фермента.

РНК-полимераза — фермент, осуществляющий синтез молекул РНК. В узком смысле, РНК-полимеразой обычно называют ДНК-зависимые РНК-полимеразы, осуществляющие синтез молекул РНК на матрице ДНК, то есть осуществляющие транскрипцию. Ферменты класса РНК-полимераз очень важны для функционирования клетки, поэтому они имеются во всех организмах и во многих вирусах. Химически РНК-полимеразы являются нуклеотидил-трансферазами, полимеризующими рибонуклеотиды на 3'-конце цепи РНК.

История изучения[править | править вики-текст]

РНК-полимераза была открыта независимо Сэмом Вайссом и Джерардом Хурвицем в 1960.[1] К этому моменту Нобелевская премия по медицине в 1959 году уже была присуждена Северо Охоа и Артуру Корнбергу за открытие вещества, которое считали РНК-полимеразой[2], впоследствии оказавшегося рибонуклеазой.

Нобелевская премия по химии в 2006 году была присуждена Роджеру Корнбергу за получение точных изображений молекул РНК-полимеразы в различные моменты процесса транскрипции.[3]

Управление транскрипцией[править | править вики-текст]

Электронная микрофотография нитей ДНК, обвешанных сотнями молекул РНК-полимеразы, слишком маленьких для такого разрешения. Каждая РНК-полимераза транскрибирует нить РНК, которая видна на фотографии как ответвление от ДНК. Отметкой «Begin» указан 5'-конец ДНК, с которого РНК-полимераза начинает транскрипцию; «End» — 3'-конец, у которого транскрипция более длинных молекул РНК завершается.

Управление процессом транскрипции генов позволяет контролировать экспрессию генов и таким образом позволяет клетке адаптироваться к изменяющимся условиям внешней среды, поддерживать метаболические процессы на должном уровне, а также выполнять специфические функции, необходимые для существования организма. Неудивительно, что действие РНК-полимеразы очень сложно и зависит от множества факторов (так, у Escherichia coli идентифицировано более 100 факторов, тем или иным способом влияющих на РНК-полимеразу[4]).

РНК-полимераза начинает транскрипцию с особых участков ДНК, называемых промоторами и производит цепочку РНК, комплементарную соответствующей части нити ДНК.

Процесс наращивания молекулы РНК нуклеотидами называется элонгацией. В эукариотических клетках РНК-полимераза может собирать цепочки из более 2,4 млн элементов (например, такую длину имеет полный ген белка дистрофина).

РНК-полимераза завершает формирование цепочки РНК, когда встречает в ДНК специфическую последовательность, называемую терминатором.

РНК-полимераза производит следующие разновидности РНК:

  • Матричная РНК (мРНК) — шаблон для синтеза белков в рибосомах.
  • Некодирующая РНК или «РНК-ген» — большой класс генов, кодирующих РНК, на которых не может быть построено белка. Самые известные представители этого класса — транспортная РНК (тРНК) и рибосомная РНК (рРНК), сами участвующие в процессе синтеза белка. Однако начиная с поздних 90-х годов XX столетия было обнаружено много других РНК-генов. Это дало возможность предположить, что РНК-гены играют более значительную роль в клетке, чем было принято считать раньше.

РНК-полимераза осуществляет синтез с нуля. Это возможно вследствие того, что взаимодействие начального нуклеотида гена и РНК-полимеразы позволяет ей закрепиться на цепочке и обрабатывать следующие нуклеотиды. Это отчасти объясняет, почему РНК-полимераза обычно начинает транксрипцию с АТФ, за которым следует ГТФ, УТФ и затем ЦТФ. В отличие от ДНК-полимеразы РНК-полимераза обладает также геликазным действием.

Действие РНК-полимеразы[править | править вики-текст]

Связывание и инициирование транскрипции[править | править вики-текст]

Схема инициализации транскрипции

В связывании РНК-полимеразы участвует α-субъединица, распознающая элемент ДНК, предшествующий гену (-40…-70 шагов), и σ-фактор, распознающий участок −10…-35. Существует большое количество σ-факторов, контролирующих экспрессию генов. Например: σ70, который синтезируется в нормальных условиях и позволяет РНК-полимеразе связываться с генами, отвечающими за метаболические процессы клетки; или σ32, блокирующий связывание РНК-полимеразы с генами белков теплового шока.

После связывания с ДНК структура РНК-полимеразы превращается из закрытой в открытую. Это превращение включает в себя разделение моноспиралей ДНК с образованием раскрученного участка длиной около 13 шагов. Рибонуклеотиды затем собираются в цепочку в соответствии с базовой нитью ДНК, используемой в качестве шаблона. Суперскрученность молекул ДНК играет существенную роль в деятельности РНК-полимеразы: поскольку участок ДНК перед РНК-полимеразой раскручен, в нем существуют положительные компенсационные супервитки. Участки ДНК позади РНК-полимеразы снова закручиваются и в них присутствуют отрицательные супервитки.

Элонгация[править | править вики-текст]

Во время элонгационной фазы транскрипции происходит добавление рибонуклеотидов к цепи и переход от структуры РНК-полимеразного комплекса от открытой к транскрипционной. По мере сборки молекулы РНК участок ДНК перед РНК-полимеразой раскручивается далее, и 13-парный открытый комплекс превращается в 17-парный транскрипционный комплекс. В этот момент промотор (участок ДНК −10…-35 шагов) завершается, и σ-фактор отделяется от РНК-полимеразы. Это позволяет остальному РНК-полимеразному комплексу начать движение вперед, так как σ-фактор удерживал его на месте.

17-парный транскрипционный комплекс содержит гибрид ДНК и РНК, содержащий 8 пар оснований — 8-шаговый участок РНК, соединенный с шаблонной цепью ДНК. По мере выполнения транскрипции рибонуклеотиды добавляются к 3'-концу собираемой РНК, и РНК-полимеразный комплекс движется по цепи ДНК. Хотя в РНК-полимеразе не обнаружено свойств, характерных для 3'-экзонуклеазы, аналогичных проверочной деятельности ДНК-полимеразы, есть свидетельства того, что РНК-полимераза останавливается и корректирует ошибки в случаях ошибочного формирования пар оснований ДНК-РНК.

Добавление рибонуклеотидов к РНК обладает механизмом, очень близким к полимеризации ДНК. Считается, что ДНК- и РНК-полимеразы могут быть эволюционно связаны. Аспарагиновые остатки в РНК-полимеразе связываются с ионами Mg2+, которые, в свою очередь, осуществляют выравнивание фосфатных групп рибонуклеотидов: первый Mg2+ удерживает α-фосфат нуклеотидтрифосфата, подлежащего добавлению в цепочку. Это позволяет осуществить связывание нуклеотида с 3' OH-группой конца собираемой цепочки и таким образом добавить НТФ в цепочку. Второй Mg2+ удерживает пирофосфат НТФ. Общее уравнение реакции таким образом имеет вид:

(НМФ)n + НТФ --> (НМФ)n+1 + ПФi

Терминация[править | править вики-текст]

Терминация транскрипции РНК может быть ρ-независимой либо ρ-зависимой.

ρ-независимая терминация осуществляется без помощи ρ-фактора. Транскрипция палиндромного участка ДНК приводит к формированию шпильки из РНК, зацикленной и связанной с самой собой. Эта шпилька богата гуанином и цитозином, что делает ее более стабильной, нежели гибрид ДНК-РНК. В результате 8-парный гибрид ДНК-РНК в транскрипционном комплексе сокращается до 4-парного. В случае если эти 4 последние пары оснований составлены слабыми аденином и уридином, молекула РНК отделяется.[5]

Бактериальная РНК-полимераза[править | править вики-текст]

У бактерий один и тот же фермент катализирует синтез трёх типов РНК: мРНК, рРНК и тРНК.

РНК-полимераза — достаточно большая молекула. Основной фермент содержит 5 субъединиц (~400 кДа):

  • α2: две α-субъединицы связывают остальные элементы фермента и распознают регулирующие факторы. Каждая субъединица состоит из двух доменов: αСКД (С-концевой домен) связывает первый элемент промотора, и αNКД (N-концевой домен) связывается с остальными компонентами полимеразы.
  • β: эта субъединица обладает собственно полимеразным действием, катализируя синтез РНК. Она осуществляет инициацию процесса и управляет элонгацией.
  • β': неспецифически связывается с ДНК.
  • ω: восстанавливает денатурированную РНК-полимеразу обратно в дееспособную форму in vitro. Также обнаружено ее защитное/шаперонное действие на β'-субъединицу у Mycobacterium smegmatis.

Для связывания с промоторными областями ДНК, основной фермент нуждается в еще одной субъединице — сигма (σ). Сигма-фактор значительно снижает сродство РНК-полимеразы к неспецифичным областям ДНК, и в то же время повышает ее чувствительность к определенным промоторам, в зависимости от своей структуры. С его помощью транскрипция начинается с нужного участка ДНК.

Полный голоэнзим таким образом состоит из 6 субъединиц: α2ββ'σω (~480 кДа). В структуре РНК-полимеразы присутствует канавка длиной 55 Å (5,5 нм) и шириной 25 Å (2,5 нм). Именно в эту канавку помещается двойная спираль ДНК, имеющая ширину 20 Å (2 нм). На длине канавки укладывается 16 нуклеотидов.

Молекулы РНК-полимеразы не растворены в цитоплазме. Когда РНК-полимераза не используется, она связывается с неспецифичными областями ДНК в ожидании открытия активного промотора.

Транскрипционные кофакторы[править | править вики-текст]

Существуют белки, связывающиеся с РНК-полимеразой и влияющие на ее поведение. Например greA и greB из E. coli усиливают способность РНК-полимеразы расщеплять шаблон РНК у растущего конца цепи. Такое расщепление может «спасти» застрявшую молекулу РНК-полимеразы, а также, вероятно, участвует в устранении ошибок сборки цепи РНК.

Отдельный кофактор Mfd задействован в транскрипционном восстановлении ДНК. Во время этого процесса РНК-полимераза обнаруживает поврежденные участки ДНК и привлекает другие ферменты для ее восстановления.

Многие другие кофакторы обладают регулирующим влиянием, заставляя РНК-полимеразу экспрессировать или не экспрессировать определенные гены.

РНК-полимераза в эукариотических клетках[править | править вики-текст]

Главная субъединица РНК-полимераз-I, II и III у человека

Эукариоты обладают различными типами РНК-полимераз, классифицируемыми по типам РНК, которые они производят:

Существуют также и другие типы РНК-полимеразы, используемые в митохондриях и хлоропластах. Молекулярная масса этих ферментов составляет величину порядка 500 000. Они различаются по чувствительности к альфа-аманитину. РНК-полимераза I нечувствительна к нему, РНК-полимераза III умеренно чувствительна, а РНК-полимераза II сильно ингибируется им.[9]

РНК-полимераза у архей[править | править вики-текст]

Археи используют один вид РНК-полимеразы, который тем не менее очень похож на три основных типа РНК-полимераз у эукариот. Некоторые ученые предполагают, что архейная РНК-полимераза в определенном приближении может являться эволюционным предком специализированных эукариотических полимераз.[10]

РНК-полимераза у вирусов[править | править вики-текст]

РНК-полимераза вируса Т7, производящая мРНК (показана зелёным) с матричной ДНК. Белок показан фиолетовой лентой. Изображение взято с PDB 1MSW.

Многие вирусы содержат РНК-полимеразу. Пожалуй, наиболее хорошо изученная вирусная РНК-полимераза имеется у бактериофага Т7. Эта РНК-полимераза, состоящая из одной субъединицы, похожа на митохондриальную и хлоропластную, а также на ДНК-полимеразу.[11] Считается, что большинство вирусных полимераз произошли от ДНК-полимеразы, а не от сложных многокомпонентных РНК-полимераз.

Вирусные полимеразы очень многочисленны. Многие из них могут использовать в качестве шаблона РНК, а не ДНК, как, например, у вирусов с двуцепочечной РНК или с одноцепочечной РНК негативной полярности. Некоторые вирусы с одноцепочечной РНК позитивной полярности также содержат РНК-зависимые РНК-полимеразы.[12]

Функциональные области[править | править вики-текст]

C-концевой домен РНК-полимеразы[править | править вики-текст]

Инициирование транскрипции[править | править вики-текст]

Домен, расположенный на углекислом конце РНК-полимеразы II осуществляет инициирование транскрипции ДНК. C-концевой домен обычно состоит из порядка 52 повторений последовательности Tyr-Ser-Pro-Thr-Ser-Pro-Ser [13]. Фактор транскрипции TFIIH, являющийся киназой, гиперфосфорилирует C-концевой домен РНК-полимеразы, тем самым заставляя полимеразный комплекс начать движение от места инициирования транскрипции.

5'-кэпирование[править | править вики-текст]

С-концевой домен также является местом связывания комплекса кэпирования. У эукариот после синтеза 5'-конца мРНК фосфатаза концевой фосфат с 5'-конца полирибонуклеотида фермент гуанозинтрансфераза присоединяет к нему гуанозинмонофосфат. При этом образуется 5',5'-трифосфатная связь. Кэпирующий комплекс затем диссоциирует от мРНК, 5'-кэп из ГТФ связывается с кэп-связывающим комплексом, C-концевого домена РНК-полимеразы. 5'-кэп в структуре мРНК эукариот имеет большое значение для связывания молекул мРНК с рибосомами, а также предотвращает деградацию РНК.

Сплайсосома[править | править вики-текст]

Углекисло-концевой домен РНК-полимеразы также является областью связывания со сплайсосомными факторами, участвующими в процессе сплайсинга РНК. Эти факторы способствуют осуществлению сплайсинга и удалению интронов в процессе транскрипции РНК.

Мутация в C-концевом домене[править | править вики-текст]

Был проведен ряд исследований поведения РНК-полимеразы при удалении определенных аминокислот из ее C-концевого домена. Показано, что мутации усечения C-концевого домена РНК-полимеразы II влияют на ее способность начинать транскрипцию набора генов in vivo, снижая чувствительность к активационным последовательностям этих генов.

Очистка РНК-полимеразы[править | править вики-текст]

РНК-полимераза может быть выделена следующими способами:

А также комбинациями вышеуказанных методов.

См. также[править | править вики-текст]

Примечания[править | править вики-текст]

  1. Jerard Hurwitz (Dec 2005). «The Discovery of RNA Polymerase». Journal of Biological Chemistry 280 (52): 42477-85. DOI:10.1074/jbc.X500006200. PMID 16230341.
  2. Nobel Prize 1959
  3. Nobel Prize in Chemistry 2006
  4. Akira Ishihama (2000). «Functional modulation of Escherichia coli RNA polymerase» 54: 499-518. PMID 11018136.
  5. Farnham PJ; Platt T. (Feb 1981). «Rho-independent termination: dyad symmetry in DNA causes RNA polymerase to pause during transcription in vitro». Nucleic Acids Res. 9 (3): 563-77. PMID 7012794.
  6. Grummt I. (1999). «Regulation of mammalian ribosomal gene transcription by RNA polymerase I.». Prog Nucleic Acid Res Mol Biol. 62: 109-54. PMID 9932453.
  7. Lee Y; Kim M; Han J; Yeom KH; Lee S; Baek SH; Kim VN. (Oct 2004). «Гены микроРНК, транскрибируемые РНК-полимеразой II». EMBO J. 23 (20): 4051-60. PMID 15372072.
  8. Willis IM. (Feb 1993). «RNA polymerase III. Genes, factors and transcriptional specificity». Eur J Biochem. 212 (1): 1-11. PMID 8444147.
  9. РНК-полимеразы: общие сведения. Проверено 20 февраля 2011. Архивировано из первоисточника 16 февраля 2012.
  10. D Langer, J Hain, P Thuriaux and W Zillig (1995) Transcription in Archaea: Similarity to that in Eucarya PNAS 92 5768-5772
  11. Hedtke et al. (1997) Mitochondrial and chloroplast phage-type RNA polymerases in Arabidopsis. Science 227 809—811
  12. Paul Ahlquist (2002) RNA-Dependent RNA Polymerases, Viruses, and RNA Silencing. Science 296 1270—1273
  13. Anton Meinhart1; Patrick Cramer (Jul 2004). «Recognition of RNA polymerase II carboxy-terminal domain by 3'-RNA-processing factors». Nature 430 (6996): 223-226. DOI:10.1038/nature02679. PMID 15241417.
  14. Kelly JL; Lehman IR. (Aug 1986). «Yeast mitochondrial RNA polymerase. Purification and properties of the catalytic subunit.». J Biol Chem. 261 (22): 10340-7. PMID 3525543.
  15. Honda A et al (Apr 1990). «Purification and molecular structure of RNA polymerase from influenza virus A/PR8.». J Biochem (Tokyo) 107 (4): 624-8. PMID 2358436.
  16. Hager et al. (1990) Use of Mono Q High-Resolution Ion-Exchange Chromatography To Obtain Highly Pure and Active Escherichia coli RNA Polymerase Biochemistry 29 7890-7894

Литература[править | править вики-текст]

  • Lehninger Principles of Biochemistry, 4th edition, David L. Nelson & Michael M. Cox

Ссылки[править | править вики-текст]

  • DNAi — DNA Interactive: информация и Flash-ролики об РНК-полимеразе.