Рельефное текстурирование

Материал из Википедии — свободной энциклопедии
Перейти к: навигация, поиск
Сфера без рельефной текстуры; Рельефная текстура, наложенная на изображение ниже; Сфера геометрически идентичная первой, но с наложенной рельефной текстурой. Благодаря этому меняется реакция при затенении, в результате чего эффект бугристой поверхности делает сферу похожей на апельсин.

Рельефное текстурирование — метод в компьютерной графике для придания более реалистичного и насыщенного вида поверхности объектов.

Bump mapping[править | править вики-текст]

Bump mapping — простой способ создания эффекта рельефной поверхности с детализацией большей, чем позволяет полигональная поверхность. Эффект главным образом достигается за счет освещения поверхности источником света и черно-белой (одноканальной) карты высот, путем виртуального смещения пикселя (как при методе Displace mapping) как если бы там был вертекс (только без физического и визуального сдвига), за счет чего таким же образом изменяется ориентация нормалей использующихся для расчета освещенности пикселя (затенение по Фонгу), в результате получаются по-разному освещенные и затененные участки. Как правило Bump mapping позволяет создать не очень сложные бугристые поверхности, плоские выступы или впадины, на этом его использование заканчивается. Для более детальных эффектов в последствии был придуман Normal mapping.[1]

Normal mapping[править | править вики-текст]

Результат работы технологии

Normal mapping — техника, позволяющая изменять нормаль отображаемого пикселя основываясь на цветной карте нормалей, в которой эти отклонения хранятся в виде текселя, цветовые составляющие которого [r,g,b] интерпретируются в оси вектора [x, y,z], на основе которого вычисляется нормаль, используемая для расчета освещенности пикселя. Благодаря тому, что в карте нормалей задействуются 3 канала текстуры, этот метод дает большую точность, чем Bump mapping, в котором используется только один канал и нормали, по сути, всего лишь интерпретируются в зависимости от «высоты».

Карты нормалей обычно бывают двух типов:

object-space — используется для не деформирующихся объектов, таких как стены, двери, оружие и т. п.[2]

tangent-space — применяется для возможности деформировать объекты, например персонажей .[2]

Для создания карт нормалей обычно используется высокополигональная и низкополигональная модели, их сравнение дает нужные отклонения нормалей для последней.[1]

Parallax mapping[править | править вики-текст]

Данная технология также использует карты нормалей, но, в отличие от normal mapping, она реализует не только освещение с учётом рельефа, но и сдвигает координаты диффузной текстуры. Этим достигается наиболее полный эффект рельефа, особенно при взгляде на поверхность под углом.

Parallax occlusion mapping[править | править вики-текст]

Parallax occlusion mapping является усовершенствованной и в то же время одной из наиболее вычислительно сложных разновидностей Parallax mapping. Фактически представляет собой форму локальной трассировки лучей в пиксельном шейдере. Трассировка лучей используется для определения высот и учёта видимости текселей. Иными словами, данный метод позволяет создавать ещё большую глубину рельефа при небольших затратах полигонов и применении сложной геометрии. Недостаток метода — невысокая детализация силуэтов и граней.

Реализовать Parallax occlusion mapping возможно в рамках функционала API DirectX 9 Shader Model 3, однако для получения оптимальной производительности видеокарта должна обеспечивать надлежащий уровень скорости исполнения ветвлений в пиксельном шейдере. На данный момент Parallax occlusion mapping используется в некоторых компьютерных играх, например, S.T.A.L.K.E.R, Crysis, Metro 2033 и ArmA 2. Также эта технология используется в популярном бенчмарке 3DMark Vantage.

Displacement mapping[править | править вики-текст]

Bump map vs isosurface2.png

Эта техника, в отличие от описанных выше, изменяет геометрию поверхности по заданной карте высот, обычно передающегося в вершинный шейдер через текстуру. Преимущество в том, что освещение считается обычным способом (пиксельный шейдер может быть практически любым), но требует высокую детализацию модели.

См. также[править | править вики-текст]

Примечания[править | править вики-текст]

Литература[править | править вики-текст]

  • Buss, S.R. V.2 Bump mapping // 3D Computer Graphics: A Mathematical Introduction with OpenGL. — Cambridge University Press, 2003. — 371 p. — ISBN 9780521821032.
  • Birn, J. Digital Lighting and Rendering. — Pearson Education, 2013. — 464 p. — ISBN 9780133439175.
  • Akenine-Möller, T. and Haines, E. and Hoffman, N. Real-Time Rendering, Third Edition. — CRC Press, 2008. — 1045 p. — ISBN 9781439865293.