Рентгеновский телескоп

Материал из Википедии — свободной энциклопедии
Перейти к: навигация, поиск

Рентгеновский телескоп (англ. X-ray telescope, XRT) — телескоп, предназначенный для наблюдения удаленных объектов в рентгеновском спектре. Для работы таких телескопов обычно требуется поднять их над атмосферой Земли, непрозрачной для рентгеновских лучей. Поэтому телескопы размещают на высотных ракетах или на ИСЗ.

Оптическая схема[править | править вики-текст]

Из-за большой энергии рентгеновские кванты практически не преломляются в веществе (следовательно, тяжело изготовить линзы) и не отражаются при любых углах падения, кроме самых пологих (около 90 градусов).

Рентгеновские телескопы могут использовать несколько методов для фокусирования лучей. Наиболее часто используются телескопы Вольтера (с зеркалами скользящего падения), кодирование апертуры и модуляционные (качающиеся) коллиматоры. Ограниченные возможности рентгеновской оптики приводят к более узкому полю зрения по сравнению с телескопами, работающими в диапазонах УФ и видимого света.

Зеркала[править | править вики-текст]

Использование рентгеновских зеркал для внесолнечной астрономии требует одновременно:

  • возможность определить исходное направление рентгеновского фотона по двум координатам и
  • достаточную эффективность детектирования.

Зеркала могут быть изготовлены из керамики или металлической фольги. Наиболее часто для рентгеновских зеркал скользящего падения используются золото и иридий. Критический угол отражения сильно зависит от энергии фотонов. Для золота и энергии в 1 кэВ, критический угол составляет 3,72 °.

Кодирование апертуры[править | править вики-текст]

Многие рентгеновские телескопы используют кодирование апертуры для получения изображений. В этой технологии перед матричным детектором устанавливается маска в виде решетки из чередующихся особым образом прозрачных и непрозрачных элементов (например, квадратная маска в виде матрицы Адамара). Данный элемент для фокусировки и получения изображений весит меньше, чем другие варианты рентгеновской оптики (поэтому часто используется на спутниках), но при этом требует большей пост-обработки для получения изображения.

Диапазоны энергий[править | править вики-текст]

Телескопы[править | править вики-текст]

Установка SIGMA обсерватории Гранат
Размещение телескопа Swift


Exosat[править | править вики-текст]

На борту Exosat размещено два низкоэнергетических рентгеновских телескопа типа Wolter I с возможностью получения изображений. В фокальной плоскости могут быть установлены

  • позиционно-чувствительный пропорциональный счётчик (PSD, position-sensitive proportional counter)
  • многоканальный усилитель (CMA, channel multiplier array).[1]

Телескопы жёсткого рентгеновского диапазона[править | править вики-текст]

См. OSO 7 (англ. OSO 7)

На борту Седьмой орбитальной солнечной обсерватории (OSO 7) находился рентгеновский телескоп жёсткого диапазона. Характеристики: диапазон энергий 7 — 550 кэВ, поле зрения 6,5° эффективная площадь ~64 см²

Телескоп ФИЛИН[править | править вики-текст]

Телескоп ФИЛИН, установленный на станции Салют-4, состоял из трёх газовых пропорциональных счётчиков с общей рабочей площадью 450 см², диапазон энергий 2-10 кэВ, и одного с рабочей площадью 37 см², диапазон энергий 0,2-2 кэВ. Поле зрения ограничено щелевым коллиматором полушириной 3° x 10°. Инструменты включают фотоэлементы, смонтированные вне станции вместе с датчиками. Измерительные модули и питание расположены внутри станции.

Калибровка датчиков по наземным источникам производилась параллельно с полётными операциями в трёх режимах: инерциальная ориентация, орбитальная ориентация и обзор. Данные собирались в четырёх энергетических диапазонах: 2-3,1 кэВ, 3,1-5,9 кэВ, 5,9-9,6 кэВ и 2-9,6 кэВ на больших детекторах. Малый датчик имеет ограничители, устанавливаемые на уровни 0,2, 0,55, 0,95 кэВ.

Телескоп SIGMA[править | править вики-текст]

Телескоп жесткого рентгеновского и низкоэнергетического гамма-диапазона SIGMA покрывает диапазон 35-1300 кэВ[2] с эффективной площадью 800 см² и полем зрения максимальной чувствительности ~5° × 5°. Максимальное угловое разрешение 15 минут дуги[3] Энергетическое разрешение — 8 % при 511 кэВ.[4] Благодаря сочетанию кодирующей апертуры и позиционно-чувствительных датчиков на основе принципов камеры Ангера, телескоп способен строить изображения.[5]


Рентгеновский телескоп АРТ-П[править | править вики-текст]

Установка АРТ-П обсерватории Гранат

Рентгеновский телескоп АРТ-П покрывает диапазон энергий от 4 до 60 кэВ (изображения) и от 4 до 100 кэВ (спектроскопия и измерения временных параметров). Состоит из четырёх идентичных модулей, содержащих позиционно чувствительный пропорциональный счётчик и кодирующую маску типа URA. Каждый модуль имеет эффективную площадь около 600 см², соответствующую полю зрения 1,8° x 1,8°. Угловое разрешение — 5 минут дуги, временное — 3,9 мс, энергетическое — 22 % при 6 кэВ.[6] Инструмент достиг чувствительности в 0.001 потока Крабовидной туманности при восьмичасовой экспозиции. Максимальное временное разрешение — 4 мс.[5][4]

Фокусирующий рентгеновский телескоп[править | править вики-текст]

Широкополосный рентгеновский телескоп (BBXRT) был выведен на орбиту шаттлом Колумбия (STS-35) как часть полезной нагрузки ASTRO-1. BBXRT был первым фокусирующим телескопом, действующим в широком энергетическом диапазоне 0,3-12 кэВ со средним энергетическим разрешением 90 эВ при 1 кэВ и 150 эВ при 6 кэВ. Два сонаправленных телескопа с сегментированным твердотельным спектрометром Si(Li) каждый (детекторы A и B), состоящим из пяти пикселей. Общее поле зрения 17.4’ в диаметре, поле зрения центрального пикселя 4’ в диаметре. Общая площадь: 765 см² при 1,5 кэВ, 300 см² при 7 кэВ.

HEAO-2[править | править вики-текст]

Первая в мире орбитальная обсерватория с зеркалами с скользящим отражением рентгеновских фотонов. Запущена в 1978 году. Эффективная площадь около 400 кв.см на энергии 0.25 кэВ и около 30 кв.см на энергии 4 кэВ.

Чандра[править | править вики-текст]

XRT на КА Swift (миссия MIDEX)[править | править вики-текст]

Swift XRT содержит телескоп скользящего падения Wolter I для фокусировки рентгеновских лучей на ПЗС-матрице

Телескоп XRT на борту КА Swift миссии MIDEX (диапазон энергий 0.2-10 КэВ) использует телескоп Вальтера 1-го типа для фокусирования рентгеновских лучей на термоэлектрически охлаждаемую ПЗС-матрицу. [7] Научный инструмент разработан с целью измерения потока, спектра и кривых светимости гамма-всплесков (GRB) и их послесвечений в широком динамическом диапазоне, покрывающем более 7 ступеней интенсивности потока. XRT способен определять координаты вспышек с точностью до 5 секунд дуги в течение 10 секунд после захвата цели (для типичного всплеска) и может изучать рентгеновскую составляющую гамма-всплеска, начиная с 20-70 секунды после обнаружения вспышки и на протяжении нескольких дней или недель.

Общая длина телескопа — 4,67 метра, фокусное расстояние 3500 мм, диаметр 0,51 метра.[7] Первичный структурный элемент — алюминиевая оптическая скамья interface flange at the front of the telescope, которая поддерживает переднюю и заднюю трубы телескопа, зеркальный модуль, отражатель электронов, внутренняя выравнивающая (?) наблюдательная оптика и камера; плюс точки крепления к обсерватории Swift.[7]

Труба телескопа диаметром 508 мм сделана из двух секций графитовых волокон и циановых эфиров. Внешний слой из графитовых волокон создан уменьшить продольный коэффициент теплового расширения, тогда как внутренняя сложная труба облицована изнутри парозащитным барьером (vapor barrier) из алюминиевой фольги от проникновения внутрь телескопа водяных паров или эпоксидных загрязнителей.[7] XRT содержит переднюю часть, окружённую зеркалами и держащую затворную сборку и астронавигационный блок, и заднюю, держащую камеру фокальной плоскости (focal plane camera) и внутренний оптический экран.[7]

Зеркальный модуль содержит 12 вложенных зеркал скользящего падения типа Wolter I, закреплённых на передних и задних крестовинах. Пассивно нагреваемые зеркала — позолоченные никелевые оболочки длиной 600 мм и диаметром от 191 до 300 мм.[7]

X-ray imager имеет эффективную площадь 120 см2 на 1,15 кэВ, поле зрения 23,6 x 23,6 угловых минут и угловое разрешение (θ) 18 секунд дуги на диаметре половинной мощности (HPD, half-power diameter). Чувствительность детектора — 2·10−14 эрг см−2с−1 104 секунд. Функция рассеяния точки (PSF, point spread function) зеркала — 15 секунд дуги HPD в фокусе (1,5 кэВ). Зеркало слегка расфокусировано для более равномерной PSF по всему полю зрения, как следствие, PSF инструмента 18 секунд дуги.


Рентгеновский телескоп нормального падения[править | править вики-текст]

История рентгеновских телескопов[править | править вики-текст]

Первый рентгеновский телескоп использовался для наблюдений за Солнцем. Первое изображение Солнца в рентгеновском спектре было получено в 1963 году, при помощи телескопа, установленного на ракете.


Примечания[править | править вики-текст]

  1. Hoff HA (Aug 1983). «Exosat - the new extrasolar x-ray observatory». J Brit Interplan Soc (Space Chronicle). 36 (8): 363-7.
  2. (1993) «Overview of two-year observations with SIGMA on board GRANAT». Astron Astrophys Supplement Series (97).
  3. Revnivtsev MG, Sunyaev RA, Gilfanov MR, Churazov EM, Goldwurm A, Paul J, Mandrou P, Roques JP (2004). «A hard X-ray sky survey with the SIGMA telescope of the GRANAT observatory». Astron Lett. 30: 527-33.
  4. 1 2 International Astrophysical Observatory "GRANAT". IKI RAN. Проверено 5 декабря 2007. Архивировано из первоисточника 15 апреля 2012.
  5. 1 2 GRANAT. NASA HEASARC. Проверено 5 декабря 2007. Архивировано из первоисточника 15 апреля 2012.
  6. Molkov, S.V., Grebenev, S.A., Pavlinsky, M.N., Sunyaev. «GRANAT/ART-P OBSERVATIONS OF GX3+1: TYPE I X-RAY BURST AND PERSISTENT EMISSION», Mar 1999. 4pp. arXiv e-Print (astro-ph/9903089v1).
  7. 1 2 3 4 5 6 Burrows DN, Hill JE, Nousek JA, Kennea JA, Wells A, Osborne JP, Abbey AF, Beardmore A, Mukerjee K, Short ADT, Chincarini G, Campana S, Citterio O, Moretti A, Pagani C, Tagliaferri G, Giommi P, Capalbi M, Tamburelli F, Angelini L, Cusumano G, Bräuninger HW, Burkert W, Hartner GD (Oct 2005). «The Swift X-ray Telescope». Space Sci Rev. 120 (3-4): 165-95. DOI:10.1007/s11214-005-5097-2.

Ссылки[править | править вики-текст]


См. также[править | править вики-текст]