Сигнал

Материал из Википедии — свободной энциклопедии
(перенаправлено с «Сигнал (радиотехника)»)
Перейти к: навигация, поиск

Сигнал — символ (знак, код), созданный и переданный в пространство (по каналу связи) одной системой, либо возникший в процессе взаимодействия нескольких систем. Смысл и значение сигнала появляются в процессе дешифровки его второй (принимающей) системой.

Сигналтеории информации и связи) — материальный носитель информации, используемый для передачи сообщений в системе связи. Сигнал может генерироваться, но его приём не обязателен, в отличие от сообщения, которое рассчитано на принятие принимающей стороной, иначе оно не является сообщением. Сигналом может быть любой физический процесс, параметры которого изменяются в соответствии с передаваемым сообщением.

Сигнал, детерминированный или случайный, описывают математической моделью, функцией, характеризующей изменение параметров сигнала. Математическая модель представления сигнала, как функции времени, является основополагающей концепцией теоретической радиотехники, оказавшейся плодотворной как для анализа, так и для синтеза радиотехнических устройств и систем. В радиотехнике альтернативой сигналу, который несёт полезную информацию, является шум — обычно случайная функция времени, взаимодействующая (например, путём сложения) с сигналом и искажающая его. Основной задачей теоретической радиотехники является извлечение полезной информации из сигнала с обязательным учётом шума.

Понятие сигнал позволяет абстрагироваться от конкретной физической величины, например тока, напряжения, акустической волны и рассматривать вне физического контекста явления связанные кодированием информации и извлечением её из сигналов, которые обычно искажены шумами. В исследованиях сигнал часто представляется функцией времени, параметры которой могут нести нужную информацию. Способ записи этой функции, а также способ записи мешающих шумов называют математической моделью сигнала.

В связи с понятием сигнала формулируются такие базовые принципы кибернетики, как понятие о пропускной способности канала связи, разработанное Клодом Шенноном и об оптимальном приеме, разработанная В. А. Котельниковым.

Классификация сигналов[править | править исходный текст]

По физической природе носителя информации:

  • электрические;
  • электромагнитные;
  • оптические;
  • акустические

и др.;

По способу задания сигнала:

  • регулярные (детерминированные), заданные аналитической функцией;
  • нерегулярные (случайные), принимающие произвольные значения в любой момент времени. Для описания таких сигналов используется аппарат теории вероятностей.

В зависимости от функции, описывающей параметры сигнала, выделяют аналоговые, дискретные, квантованные и цифровые сигналы:

Аналоговый сигнал (АС)[править | править исходный текст]

Аналоговый сигнал

Большинство сигналов имеют аналоговую природу, то есть изменяются непрерывно во времени и могут принимать любые значения на некотором интервале. Аналоговые сигналы описываются некоторой математической функцией времени.

Пример АС — гармонический сигнал: s(t) = A·cos(ω·t + φ).

Аналоговые сигналы используются в телефонии, радиовещании, телевидении. Ввести такой сигнал в цифровую систему для обработки невозможно, так как на любом интервале времени он может иметь бесконечное множество значений, и для точного (без погрешности) представления его значения требуются числа бесконечной разрядности. Поэтому очень часто необходимо преобразовывать аналоговый сигнал так, чтобы можно было представить его последовательностью чисел заданной разрядности.

Дискретный сигнал[править | править исходный текст]

Дискретный сигнал

Дискретизация аналогового сигнала состоит в том, что сигнал представляется в виде последовательности значений, взятых в дискретные моменты времени ti (где i — индекс). Обычно промежутки времени между последовательными отсчётами (Δti = ti − ti−1) постоянны; в таком случае, Δt называется интервалом дискретизации. Сами же значения сигнала x(t) в моменты измерения, то есть xi = x(ti), называются отсчётами.

Квантованный сигнал[править | править исходный текст]

Квантованный сигнал

При квантовании вся область значений сигнала разбивается на уровни, количество которых должно быть представлено в числах заданной разрядности. Расстояния между этими уровнями называется шагом квантования Δ. Число этих уровней равно N (от 0 до N−1). Каждому уровню присваивается некоторое число. Отсчёты сигнала сравниваются с уровнями квантования и в качестве сигнала выбирается число, соответствующее некоторому уровню квантования. Каждый уровень квантования кодируется двоичным числом с n разрядами. Число уровней квантования N и число разрядов n двоичных чисел, кодирующих эти уровни, связаны соотношением n ≥ log2(N).

Цифровой сигнал[править | править исходный текст]

Цифровой сигнал

Для того, чтобы представить аналоговый сигнал последовательностью чисел конечной разрядности, его следует сначала превратить в дискретный сигнал, а затем подвергнуть квантованию. Квантование является частным случаем дискретизации, когда дискретизация происходит по одинаковой величине, называемой квантом. В результате сигнал будет представлен таким образом, что на каждом заданном промежутке времени известно приближённое (квантованное) значение сигнала, которое можно записать целым числом. Последовательность таких чисел и будет являться цифровым сигналом.

Сигнал и событие[править | править исходный текст]

Событие (получение записки, наблюдение сигнальной ракеты, прием символа по телеграфу) является сигналом только в той системе отношений, в которой сообщение опознается значимым (например, в условиях боевых действий сигнальная ракета — событие, значимое только для того наблюдателя, которому оно адресовано). Очевидно, что сигнал, заданный аналитически, событием не является и не несет информацию, если функция сигнала и её параметры известны наблюдателю.

В технике сигнал всегда является событием. Другими словами, событие — изменение состояния любого компонента технической системы, опознаваемое логикой системы как значимое, является сигналом. Событие, неопознаваемое данной системой логических или технических отношений как значимое, сигналом не является.

Представление сигнала и спектр[править | править исходный текст]

Есть два способа представления сигнала в зависимости от области определения: временной и частотный. В первом случае сигнал представляется функцией времени s(t) характеризующей изменение его параметра.

Кроме привычного временного представления сигналов и функций при анализе и обработке данных широко используется описание сигналов функциями частоты. Действительно, любой сколь угодно сложный по своей форме сигнал можно представить в виде суммы более простых сигналов, и, в частности, в виде суммы простейших гармонических колебаний, совокупность которых называется частотным спектром сигнала.

Для перехода к частотному способу представления используется преобразование Фурье:

S(\omega) = \int\limits_{-\infty}^{+\infty} s(t)e^{-j\omega t}\,dt.

Функция S(\omega) называется спектральной функцией или спектральной плотностью. Поскольку спектральная функция S(\omega) является комплексной, то можно говорить о спектре амплитуд |S(\omega)| и спектре фаз \phi(\omega)=arg(S(\omega)).

Физический смысл спектральной функции: сигнал s(t) представляется в виде суммы бесконечного ряда гармонических составляющих (синусоид) с амплитудами \frac{|S(\omega)|}{\pi}d\omega, непрерывно заполняющими интервал частот от 0 до \infty, и начальными фазами \phi(\omega).

Размерность спектральной функции есть размерность сигнала, умноженная на время.

Параметры сигналов[править | править исходный текст]

  • Мощность сигнала P(t)=s^2(t)
  • Удельная энергия сигнала E_\text{уд}=	\int\limits_{-\infty}^\infty {s^2(t) dt}
  • Длительность сигнала T определяет интервал времени, в течение которого сигнал существует (отличен от нуля);
  • Динамический диапазон есть отношение наибольшей мгновенной мощности сигнала к наименьшей:
D = 10 \lg \frac{P_{max}}{P_{min}}
  • Ширина спектра сигнала F — полоса частот, в пределах которой сосредоточена основная энергия сигнала;
  • База сигнала есть произведение длительности сигнала на ширину его спектра B=TF. Необходимо отметить, что между шириной спектра и длительностью сигнала существует обратно пропорциональная зависимость: чем короче спектр, тем больше длительность сигнала. Таким образом, величина базы остается практически неизменной;
  • Отношение сигнал/шум равно отношению мощности полезного сигнала к мощности шума;
  • Объём передаваемой информации характеризует пропускную способность канала связи, необходимую для передачи сигнала. Он определяется как произведение ширины спектра сигнала на его длительность и динамический диапазон:
V=FTD

В радиотехнике[править | править исходный текст]

В радиотехнике основным элементом кодирования является модуляция сигнала. При этом обычно рассматривается близкий к гармоническому сигнал вида s(t) = A sin(2πf·t + φ), где амплитуда A, частота f или фаза φ медленно (относительно скорости изменения синуса) изменяются в зависимости от передаваемой информации (амплитудная, частотная или фазовая модуляция, соответственно).

Стохастические модели сигнала, предполагают случайным или сам сигнал, или переносимую им информацию. Стохастическая модель сигнала часто формулируется как уравнение, связывающее сигнал с шумом, который в данном случае имитирует множество возможных информационных сообщений и называется формирующим шумом, в отличие от мешающего шума наблюдения.

Обобщением скалярной модели сигнала являются, например, векторные модели сигналов, представляющие собой упорядоченные наборы отдельных скалярных функций, с определенной взаимосвязью компонентов вектора друг с другом. На практике векторная модель соответствует, в частности, одновременному приему сигнала несколькими приемниками с последующей совместной обработкой. Ещё одним расширением понятия сигнала является его обобщение на случай полей.

См. также[править | править исходный текст]

Литература[править | править исходный текст]

  • Гоноровский И. С. Радиотехнические цепи и сигналы. — М.: Радио и связь, 1986. — 512 с.
  • Иванов М. Т., Сергиенко А. Б., Ушаков В. Н. Теоретические основы радиотехники / Под ред. В. Н. Ушакова. — М.: Высшая школа, 2002. — 306 с.
  • Куликовский Л. Ф., Молотов В. В. Теоретические основы информационных процессов. — М.: Высшая школа, 1987. — 248 с.
  • Осипов Л. А. Обработка сигналов на цифровых процессорах. Линейно-аппроксимирующий метод. — М.: Горячая линия — Телеком, 2001. — 114 с.

Ссылки[править | править исходный текст]