Скандий

Материал из Википедии — свободной энциклопедии
Перейти к: навигация, поиск
21 КальцийСкандийТитан
Sc

Y
Водород Гелий Литий Бериллий Бор Углерод Азот Кислород Фтор Неон Натрий Магний Алюминий Кремний Фосфор Сера Хлор Аргон Калий Кальций Скандий Титан Ванадий Хром Марганец Железо Кобальт Никель Медь Цинк Галлий Германий Мышьяк Селен Бром Криптон Рубидий Стронций Иттрий Цирконий Ниобий Молибден Технеций Рутений Родий Палладий Серебро Кадмий Индий Олово Сурьма Теллур Иод Ксенон Цезий Барий Лантан Церий Празеодим Неодим Прометий Самарий Европий Гадолиний Тербий Диспрозий Гольмий Эрбий Тулий Иттербий Лютеций Гафний Тантал Вольфрам Рений Осмий Иридий Платина Золото Ртуть Таллий Свинец Висмут Полоний Астат Радон Франций Радий Актиний Торий Протактиний Уран Нептуний Плутоний Америций Кюрий Берклий Калифорний Эйнштейний Фермий Менделевий Нобелий Лоуренсий Резерфордий Дубний Сиборгий Борий Хассий Мейтнерий Дармштадтий Рентгений Коперниций Унунтрий Флеровий Унунпентий Ливерморий Унунсептий УнуноктийПериодическая система элементов
21Sc
Hexagonal.svg
Electron shell 021 Scandium.svg
Внешний вид простого вещества
Scandium sublimed dendritic and 1cm3 cube.jpg
Умеренно мягкий, лёгкий редкоземельный металл серебристого цвета с жёлтым отливом
Свойства атома
Название, символ, номер

Скандий / Scandium (Sc), 21

Атомная масса
(молярная масса)

44,955912(6)[1] а. е. м. (г/моль)

Электронная конфигурация

[Ar] 3d1 4s2

Радиус атома

162 пм

Химические свойства
Ковалентный радиус

144 пм

Радиус иона

(+3e) 72,3 пм

Электроотрицательность

1,36 (шкала Полинга)

Электродный потенциал

0

Степени окисления

3

Энергия ионизации
(первый электрон)

 630,8 (6,54) кДж/моль (эВ)

Термодинамические свойства простого вещества
Плотность (при н. у.)

2,99 г/см³

Температура плавления

1 814 K

Температура кипения

3 110 K

Уд. теплота плавления

15,8 кДж/моль

Уд. теплота испарения

332,7 кДж/моль

Молярная теплоёмкость

25,51[2] Дж/(K·моль)

Молярный объём

15,0 см³/моль

Кристаллическая решётка простого вещества
Структура решётки

гексагональная (α-Sc)

Параметры решётки

a=3,309 c=5,268 (α-Sc)

Отношение c/a

1,592

Прочие характеристики
Теплопроводность

(300 K) 15,8 Вт/(м·К)

21
Скандий
Sc
44,956
3d14s2

Ска́ндий (лат. Scandium; обозначается символом Sc) — элемент побочной подгруппы третьей группы, четвёртого периода периодической системы химических элементов Д. И. Менделеева, с атомным номером 21. Простое вещество скандий (CAS-номер: 7440-20-2) — лёгкий металл серебристого цвета с характерным жёлтым отливом. Существует в двух кристаллических модификациях: α-Sc с гексагональной решёткой типа магния, β-Sc с кубической объёмноцентрированной решёткой, температура перехода α↔β 1336 °C[2].

Нахождения в природе[править | править вики-текст]

Геохимия и минералогия[править | править вики-текст]

Среднее содержание скандия в земной коре 10 г/т. Близки по химическим и физическим свойствам к скандию иттрий, лантан и лантаноиды. Во всех природных соединениях скандий, так же как и его аналоги алюминий, иттрий, лантан, проявляет положительную валентность, равную трём, поэтому в окислительно-восстановительных процессах он участия не принимает. Скандий является рассеянным элементом и входит в состав многих минералов. Собственно скандиевых минералов известно 2: тортвейтит (Sc, Y)2 Si2O7 (Sc2O3 до 53,5 %) и стерреттит Sc[PO4] • 2H2O (Sc2O3 до 39,2 %). Относительно небольшие концентрации обнаружены примерно в 100 минералах. В связи с тем, что по свойствам скандий близок к Mg, Al, Ca, Mn2+, Fe2+, TR (редкоземельным элементам), Hf, Th, U, Zr, главная масса его рассеивается в минералах, содержащих эти элементы. Имеет место изовалентное замещение скандием элементов группы TR, особенно в существенно иттриевых минералах (ксенотим, ассоциация Sc — Y в тортвейтите и замещение Al в берилле). Гетеровалентное замещение скандием Fe2+ и магния в пироксенах, амфиболах, оливине, биотите широко развито в основных и ультраосновных породах, а замещение циркония — в поздние стадии магматического процесса и в пегматитах.

Основные минералы-носители скандия: флюорит (до 1 % Sc2O3), касситерит (0,005-0,2 %), вольфрамит (0-0,4 %), ильменорутил (0,0015-0,3 %), торианит (0,46 % Sc2O3), самарскит (0,45 %), виикит (1,17 %), ксенотим (0,0015-1,5 %), берилл (0,2 %), баццит (скандиевый берилл, 3-14,44 %). В процессе формирования магматических пород и их жильных производных скандий в главной своей массе рассеивается преимущественно в тёмноцветных минералах магматических пород и в незначительной степени концентрируется в отдельных минералах постмагматических образований. Наиболее высокие (30 г/т Sc2O3) концентрации скандия приурочены к ультраосновным и основным породам, в составе которых ведущую роль играют железо-магнезиальные минералы (пироксен, амфибол и биотит). В породах среднего состава среднее содержание Sc2O3 10 г/т, в кислых — 2 г/т. Здесь скандий рассеивается также в тёмноцветных минералах (роговой обманке, биотите) и устанавливается в мусковите, цирконе, сфене. Концентрация в морской воде 0,00004 мг/л[3].

Месторождения[править | править вики-текст]

Самые значительные месторождения тортвейтита (минерала, наиболее богатого скандием) расположены на Мадагаскаре и в Норвегии[4].

История[править | править вики-текст]

Элемент был предсказан Д. И. Менделеевым (как экабор) в статье, датированной 11 декабря (29 ноября по старому стилю) 1870 года[5], и открыт в 1879 году шведским химиком Ларсом Нильсоном. Нильсон назвал элемент в честь Скандинавии.

Физические свойства[править | править вики-текст]

Скандий — лёгкий металл серебристого цвета с характерным жёлтым отливом. Существует в двух кристаллических модификациях: α-Sc с гексагональной решёткой типа магния (a=3,3085 Å; с=5,2680 Å; z=2; пространственная группа P63/mmc), β-Sc с кубической объёмноцентрированной решёткой, температура перехода α↔β 1336 °C, ΔH перехода 4,01 кДж/моль. Температура плавления 1541 °C, температура кипения 2837 °C. Скандий — мягкий металл, с чистотой 99,5 % и выше (в отсутствие O2) легко поддается механической обработке[2].

Химические свойства[править | править вики-текст]

Химические свойства скандия похожи на таковые у алюминия. Во всех соединениях скандий проявляет степень окисления +3. Компактный металл на воздухе покрывается с поверхности оксидной пленкой. При нагревании до красного каления реагирует с фтором, кислородом, азотом, углеродом, фосфором. При комнатной температуре реагирует с хлором, бромом и йодом. Реагирует с разбавленными сильными кислотами; концентрированными кислотами-окислителями и HF пассивируется. Реагирует с концентрированными растворами щелочей.

Ион Sc3+ бесцветный диамагнитный, координаионное число в водных растворах 6. Как и в случае алюминия, гидроксид скандия амфотерен и растворяется как в избытке кислот, так и в избытке щелочей; с разбавленным раствором аммиака не реагирует. Хлорид, бромид, иодид и сульфат скандия хорошо растворимы в воде, раствор имеет кислую реакцию вследствие частичного гидролиза, при этом гидратация безводных солей сопровождается бурным выделением тепла. Фторид и фосфат скандия в воде не растворимы, но фторид растворятся в присутствии избытка фторид-ионов с образованием ScF63-. Нитрид, сульфид и карбонат скандия водой нацело гидролизуются. Органические соединения скандия термически относительно устойчивы, но бурно реагируют с водой и воздухом. Они построены в-основном при помощи σ-связей Sc-C и представлены алкильными производными и полимерными циклопентадиенидами.

Получение[править | править вики-текст]

Следует отметить значительные ресурсы скандия в золе каменных углей и проблему разработки технологии извлечения скандия при переработке углей на искусственное жидкое топливо.

Мировые ресурсы скандия[править | править вики-текст]

Скандий является рассеянным литофильным элементом (элемент горных пород), поэтому для технологии добычи этого элемента важно полное извлечение его из перерабатываемых руд и по мере развития металлургии руд-носителей скандия, его ежегодный объём добычи будет возрастать. Ниже приведены основные руды-носители и масса выделяемого из них попутного скандия:

  • Бокситы — 71 млн тонн переработки в год, содержат попутный скандий в объёме 710—1420 тонн;
  • Урановые руды — 50 млн тонн в год, попутный скандий 50—500 тонн в год;
  • Ильмениты — 2 млн тонн в год, попутный скандий 20—40 тонн в год;
  • Вольфрамиты — попутный скандий около 30—70 тонн в год;
  • Касситериты — 200 тысяч тонн в год, попутный скандий 20—25 тонн в год;
  • Цирконы — 100 тысяч тонн в год, попутный скандий 5—12 тонн в год.

Всего известно более сотни скандий-содержащих минералов, собственные его минералы (тортвейтит, джервисит) очень редки[6].

Скандий присутствует в каменном угле и для его добычи можно вести переработку доменных чугунолитейных шлаков, которая была начата в последние годы в ряде развитых стран.

Производство и потребление скандия[править | править вики-текст]

В 1988 году производство оксида скандия в мире составило:

Страна Объём добычи,
не менее,
кг/год
Китай 50
Франция 100
Норвегия 120
США 500
Япония 30
Казахстан 700
Украина 610
Россия 958

Следует учесть колоссальные ресурсы скандия в России и бывшем Советском Союзе (данные по добыче весьма разрозненны, но объёмы добычи, по оценкам независимых специалистов, равны или превышают официальную мировую добычу). В целом, по оценкам независимых специалистов, в настоящее время основными продуцентами скандия (оксида скандия) являются Россия, Китай, Украина и Казахстан. Публикуемые в печати объёмы скандия/оксида скандия в США, Японии, Франции — это в большей степени вторичный металл и металл, закупленный на мировом рынке. В определённой степени в ближайшие годы ожидается значительный объём поступлений скандиевого сырья из Австралии, Канады, Бразилии.

Следует также отметить, что запасы редкоземельного сырья в Монголии, содержащего скандий, это также перспективный источник скандия для скандиевой промышленности и развития металлургии скандия.

Скандий смело можно назвать металлом XXI века и прогнозировать резкий рост его добычи, рост цен и спрос в связи с переработкой огромного количества каменных углей (особенно переработка каменных углей России) на жидкое топливо.

Применение[править | править вики-текст]

Скандий — моноизотопный элемент, в природе встречается только один стабильный изотоп скандий-45.

Металлургия[править | править вики-текст]

Применение скандия в виде микролегирующей примеси оказывает значительное влияние на ряд практически важных сплавов, так например прибавление 0,4 % скандия к сплавам алюминий-магний повышает временное сопротивление разрыву на 35 %, а предел текучести на 65—84 %, и при этом относительное удлинение остаётся на уровне 20—27 %. Добавка 0,3—0,67 % к хрому, повышает его устойчивость к окислению вплоть до температуры 1290 °C, и аналогичное но ещё более ярко выраженное действие оказывает на жаростойкие сплавы типа «нихром» и в этой области применение скандия куда как эффективнее иттрия. Оксид скандия обладает рядом преимуществ для производства высокотемпературной керамики перед другими оксидами, так прочность оксида скандия при нагревании возрастает и достигает максимума при 1030 °C, в то же время оксид скандия обладает минимальной теплопроводностью и высочайшей стойкостью к термоудару. Скандат иттрия это один из лучших материалов для конструкций, работающих при высоких температурах. Определённое количество оксида скандия постоянно расходуется для производства германатных стёкол для оптоэлектроники.

Сплавы скандия[править | править вики-текст]

Главным по объёму применением скандия является его применение в алюминиево-скандиевых сплавах, применяемых в спортивной экипировке (мотоциклы, бейсбольные биты и т. п.) — везде, где требуются высокопрочные материалы. В сплаве с алюминием скандий обеспечивает дополнительную прочность и ковкость. Предел прочности на разрыв у чистого скандия около 400 МПа (40 кгс/мм2), у титана например 250—350 МПа, а у нелегированного иттрия 300 МПа. Применение скандиевых сплавов в авиации и ракетостроении позволит значительно снизить стоимость перевозок и резко повысить надёжность эксплуатируемых систем, в то же время при снижении цен на скандий и его применение для производства автомобильных двигателей так же значительно увеличит их ресурс и частично КПД. Очень важно и то обстоятельство что скандий упрочняет алюминиевые сплавы легированные гафнием. Важной и практически не изученной областью применения скандия является то обстоятельство что подобно легированию иттрием алюминия, легирование чистого алюминия скандием также повышает электропроводность проводов, и эффект резкого упрочнения имеет большие перспективы для применения такого сплава для транспортировки электроэнергии (ЛЭП). Сплавы скандия наиболее перспективные материалы в производстве управляемых снарядов. Ряд специальных сплавов скандия, композитов на скандиевой связке весьма перспективен в области конструирования скелета киборгов. В последние годы важная роль скандия (и отчасти иттрия и лютеция) выявилась в производстве некоторых по составу суперпрочных мартенситностареющих сталей, некоторые образцы которых показали прочность свыше 700 кг/мм2 (свыше 7000 МПа).

Некоторое количество скандия расходуется для легирования жаростойких сплавов никеля с хромом и железом (нихромы и фехрали) для резкого увеличения срока службы при использовании в качестве нагревательной обмотки для печей сопротивления.

Сверхтвёрдые материалы[править | править вики-текст]

Скандий используется для получения сверхтвёрдых материалов. Так, например, легирование карбида титана карбидом скандия весьма резко поднимает микротвёрдость (в 2 раза), что делает этот новый материал четвёртым по твёрдости после алмаза (около 98,7 — 120 ГПа), нитрида бора (боразона), (около 77—87 ГПа), сплава бор-углерод-кремний (около 68—77 ГПа), и существенно больше, чем у карбида бора(43,2 — 52 ГПа), карбида кремния (37 ГПа), микротвёрдость сплава карбида скандия и карбида титана около 53,4 ГПа (у карбида титана, например, 29,5 ГПа). Особенно интересны сплавы скандия с бериллием, обладающие уникальными характеристиками по прочности и жаростойкости.

Так, например, бериллид скандия (1 атом скандия и 13 атомов бериллия) обладает наивысшим благоприятным сочетанием плотности, прочности и высокой температуры плавления, и может явится лучшим материалом для строительства аэрокосмической техники, превосходя в этом отношении лучшие сплавы из известных человечеству на основе титана, и ряд композиционных материалов (в том числе ряд материалов на основе нитей углерода и бора).

Микроэлектроника[править | править вики-текст]

Оксид скандия (температура плавления 2450 °C) имел важнейшую роль в производстве супер-ЭВМ: ферриты с малой индукцией при использовании в устройствах хранения информации позволяют увеличить скорость обмена данными в несколько раз из-за снижения остаточной индукции с 2 — 3 кГаусс до 0,8 — 1 кГаусс.)

Источники света[править | править вики-текст]

Порядка 80 кг скандия (в составе Sc2O3) в год используется для производства осветительных элементов высокой интенсивности. Иодид скандия добавляется в ртутно-газовые лампы, производящие очень правдоподобные источники искусственного света, близкого к солнечному, которые обеспечивают хорошую цветопередачу при съёмке на телекамеру.

Изотопы скандия[править | править вики-текст]

Радиоактивный изотоп 46Sc (период полураспада 83,83 сут) используется в качестве «метки» в нефтеперерабатывающей промышленности, для контроля металлургических процессов и лечения раковых опухолей.

Изотоп скандий-47 (период полураспада 3,35 сут) является одним из лучших источников позитронов.

Ядерная энергетика[править | править вики-текст]

В атомной промышленности с успехом применяется гидрид и дейтерид скандия — прекрасные замедлители нейтронов и мишень (бустер) в мощных и компактных нейтронных генераторах.

Диборид скандия (температура плавления 2250 °C) применяется в качестве компонента жаропрочных сплавов, а также как материал катодов электронных приборов. В атомной промышленности находит применение бериллид скандия в качестве отражателя нейтронов, и в частности этот материал, равно как и бериллид иттрия предложен в качестве отражателя нейтронов в конструкции атомной бомбы.

Медицина[править | править вики-текст]

Важную роль оксид скандия может сыграть в медицине (высококачественные зубные протезы).

Лазерные материалы[править | править вики-текст]

Высокотемпературной сверхпроводимости, производстве лазерных материалов (ГСГГ). Галлий-скандий-гадолиниевый гранат (ГСГГ) при легировании его ионами хрома и неодима позволил получить 4,5 % КПД и рекордные параметры в частотном режиме генерации сверхкоротких импульсов, что даёт весьма оптимистичные предпосылки для создания сверхмощных лазерных систем для получения термоядерных микровзрывов уже на основе чистого дейтерия (инерциальный синтез) уже в самом ближайшем будущем. Так например ожидается[кем?] что в ближайшие 10—13 лет лазерные материалы на основе ГСГГ и боратов скандия займут ведущую роль в разработке и оснащении лазерными системами активной обороны для самолётов и вертолётов в развитых странах, и параллельно с этим развитие крупной термоядерной энергетики с привлечением гелия-3, в смесях с гелием-3 лазерный термоядерный микровзрыв уже получен.

Производство солнечных батарей[править | править вики-текст]

Оксид скандия в сплаве с оксидом гольмия используется в производстве фотопреобразователей на основе кремния в качестве покрытия. Это покрытие имеет широкую область прозрачности (400—930 нм), и снижает спектральный коэффициент отражения света от кремния до 1—4 %, и при его применении у такого модифицированного фотоэлемента увеличивается ток короткого замыкания на 35—70 %, что в свою очередь позволяет увеличить выходную мощность фотопреобразователей в 1,4 раза.

МГД-генераторы[править | править вики-текст]

Хромит скандия используется как один из лучших и наиболее долговечных материалов для изготовления электродов МГД-генераторов, к основной керамической массе добавляют предварительно окисленный хром и спекают, что придаёт материалу повышенную прочность и электропроводность. Наряду с диоксидом циркония как электродным материалом для МГД-генераторов, хромит скандия обладает более высокой стойкостью к эрозии соединениями цезия (используемого в качестве плазмообразующей добавки).

Рентгеновские зеркала[править | править вики-текст]

Скандий широко применяется для производства многослойных рентгеновских зеркал (композиции: скандий-вольфрам, скандий-хром, скандий-молибден). Теллурид скандия очень перспективный материал для производства термоэлементов (высокая термо-э.д.с, 255 мкВ/К и малая плотность и высокая прочность).

В последние годы значительный интерес для авиакосмической и атомной техники приобрели тугоплавкие сплавы (интерметаллические соединения) скандия с рением (температура плавления до 2575 °C), рутением (температура плавления до 1840 °C), железом (температура плавления до 1600 °C), (жаропрочность, умеренная плотность и др).

Огнеупорные материалы[править | править вики-текст]

Важную роль в качестве огнеупорного материала специального назначения оксид скандия (температура плавления 2450 °C) играет в производстве сталеразливочных стаканов для разливки высоколегированных сталей, по стойкости в потоке жидкого металла оксид скандия превосходит все известные и применяемые материалы (так, например, наиболее устойчивый оксид иттрия уступает в 8,5 раза оксиду скандия) и в этой области, можно сказать, незаменим. Его широкому применению препятствует лишь весьма высокая цена, и в известной степени альтернативным решением в этой области является применение скандатов иттрия армированных нитевидными кристаллами оксида алюминия для увеличения прочности), а также применение танталата скандия.

Производство фианитов[править | править вики-текст]

Важную роль играет оксид скандия для производства фианитов, где он является самым лучшим стабилизатором.

Люминофоры[править | править вики-текст]

Борат скандия, равно как и борат иттрия применяется в радиоэлектронной промышленности в качестве матрицы для люминофоров.

Биологическая роль[править | править вики-текст]

Скандий не играет никакой биологической роли[7].

См. также[править | править вики-текст]

Примечания[править | править вики-текст]

  1. Michael E. Wieser, Norman Holden, Tyler B. Coplen, John K. Böhlke, Michael Berglund, Willi A. Brand, Paul De Bièvre, Manfred Gröning, Robert D. Loss, Juris Meija, Takafumi Hirata, Thomas Prohaska, Ronny Schoenberg, Glenda O’Connor, Thomas Walczyk, Shige Yoneda, Xiang‑Kun Zhu. Atomic weights of the elements 2011 (IUPAC Technical Report) (англ.) // Pure and Applied Chemistry. — 2013. — Т. 85. — № 5. — С. 1047-1078. — DOI:10.1351/PAC-REP-13-03-02
  2. 1 2 3 Редкол.:Зефиров Н. С. (гл. ред.) Химическая энциклопедия: в 5 т. — Москва: Советская энциклопедия, 1995. — Т. 4. — С. 360. — 639 с. — 20 000 экз. — ISBN 5—85270—039—8.
  3. J.P. Riley and Skirrow G. Chemical Oceanography V. 1, 1965
  4. Популярная библиотека химических элементов. Скандий. Книги. Наука и техника
  5. Менделеев Д. И. Естественная система элементов и применение ее к указанию свойств неоткрытых элементов // Журнал Русского химического общества. — 1871. — Т. III. — С. 25—56.
  6. Скандий — Химическая энциклопедия
  7. Scandium (Sc) — Chemical properties, Health and Environmental effects (англ.). www.lenntech.com. Проверено 19 сентября 2009. Архивировано из первоисточника 22 августа 2011.

Литература[править | править вики-текст]

  • Коган. Б. И., Названова. В. А. Скандий. — М.: Изд-во АН УССР, 1963. — 304 с. с илл.

Ссылки[править | править вики-текст]