Стехиометрия

Материал из Википедии — свободной энциклопедии
Перейти к: навигация, поиск

Стехиоме́трия (от др.-греч. στοιχεῖον «элемент» + μετρέω «измерять») — система законов, правил и терминов, обосновывающих расчёты состава веществ и количественных соотношений между массами (объёмами для газов) веществ в химических реакциях. Стехиометрия включает нахождение химических формул, составление уравнений химических реакций, расчёты, применяемые в препаративной химии и химическом анализе[1][2][3].

Понятие стехиометрии относят как к химическим соединениям, так и к химическим реакциям. Соотношения, в которых, согласно законам стехиометрии, вступают в реакцию вещества, называют стехиометрическими, так же называют соответствующие этим законам соединения. В стехиометрических соединениях химические элементы присутствуют в строго определённых соотношениях (соединения постоянного стехиометрического состава, они же дальтониды). Примером стехиометрических соединений могут служить вода Н2О, сахароза С12Н22О11 и практически все другие органические, а также множество неорганических соединений.

В то же время многие неорганические соединения в силу разных причин могут иметь переменный состав (бертоллиды). Вещества, для которых наблюдаются отклонения от законов стехиометрии, называют нестехиометрическими[1]. Так, оксид титана(II) имеет переменный состав[4], в котором на один атом титана может приходиться от 0,65 до 1,25 атомов кислорода. Натриевольфрамовая бронза[5] (относящийся к оксидным бронзам вольфрамат натрия) по мере удаления из неё натрия меняет свой цвет от золотисто-жёлтого (NaWO3) до тёмного сине-зелёного (NaO•3WO3), проходя через промежуточные красный и фиолетовый цвета[6]. И даже хлорид натрия может иметь нестехиометрический состав, приобретая синий цвет при избытке металла[7]. Отклонения от законов стехиометрии наблюдаются для конденсированных фаз и связаны с образованием твёрдых растворов (для кристаллических веществ), с растворением в жидкости избытка компонента реакции или термической диссоциацией образующегося соединения (в жидкой фазе, в расплаве).

Если исходные вещества вступают в химическое взаимодействие в строго определённых соотношениях, а в результате реакции образуются продукты, количество которых поддаётся точному расчёту, то такие реакции называются стехиометрическими, а описывающие их химические уравнениястехиометрическими уравнениями. Зная относительные молекулярные массы различных соединений, можно рассчитать, в каких соотношениях эти соединения будут реагировать. Мольные соотношения между веществами — участниками реакции показывают коэффициенты, которые называют стехиометрическими (они же коэффициенты химических уравнений, они же коэффициенты уравнений химических реакций)[8]. Если вещества реагируют в соотношении 1:1, то их стехиометрические количества называют эквимолярными.

Термин «стехиометрия» ввёл И. Рихтер в книге «Начала стехиометрии, или Искусство измерения химических элементов» (J. B. Richter. Anfangsgründe der Stöchyometrie oder Meßkunst chymischer Elemente. Erster, Zweyter und Dritter Theil. Breßlau und Hirschberg, 1792–93), обобщивший результаты своих определений масс кислот и оснований при образовании солей.

В основе стехиометрии лежат законы сохранения массы, эквивалентов, закон Авогадро, Гей-Люссака, закон постоянства состава, закон кратных отношений. Открытие законов стехиометрии, строго говоря, положило начало химии как точной науки. Правила стехиометрии лежат в основе всех расчётов, связанных с химическими уравнениями реакций и применяются в аналитической и препаративной химии, химической технологии и металлургии.

Законы стехиометрии используют в расчётах, связанных с формулами веществ и нахождением теоретически возможного выхода продуктов реакции. Рассмотрим реакцию горения термитной смеси:

Fe2O3 + 2Al → Al2O3 + 2Fe.

Сколько граммов алюминия нам необходимо для завершения реакции с 85,0 граммами оксида железа (III)?

~\mathrm{\left(\frac{85.0 \ g \ Fe_2 O_3}{1}\right)\left(\frac{1 \ mol \ Fe_2 O_3}{160 \ g \ Fe_2 O_3}\right)\left(\frac{2 \ mol \ Al}{1 \ mol \ Fe_2 O_3}\right)\left(\frac{27 \ g \ Al}{1 \ mol \ Al}\right) = 28.7 \ g \ Al}

Таким образом, для проведения реакции с 85,0 граммами оксида железа (III), необходимо 28,7 граммов алюминия.

См. также[править | править вики-текст]

Примечания[править | править вики-текст]

Литература[править | править вики-текст]

  • Большая Советская Энциклопедия. — 1-е изд. — М.: ОГИЗ — Советская энциклопедия, 1947. — Т. 52. — 944 с.
  • Большая Советская Энциклопедия. — 2-е изд. — М.: Большая Советская Энциклопедия, 1957. — Т. 40. — 648 с.
  • Некрасов Б. В. Основы общей химии. — 3-е изд. — М.: Химия, 1973. — Т. 1. — 656 с.
  • Некрасов Б. В. Основы общей химии. — 3-е изд. — М.: Химия, 1973. — Т. 2. — 688 с.
  • Реми Г. Курс неорганической химии. — М.: Изд-во иностранной лит-ры, 1963. — Т. 1. — 920 с.
  • Реми Г. Курс неорганической химии. — М.: Мир, 1966. — Т. 2. — 838 с.
  • Рипан Р., Четяну И. Неорганическая химия. — М.: Мир, 1971. — Т. 1. Химия металлов. — 560 с.
  • Рипан Р., Четяну И. Неорганическая химия. — М.: Мир, 1972. — Т. 2. Химия металлов. — 872 с.
  • Химическая энциклопедия / Гл. ред. И. Л. Кнунянц. — М.: Советская энциклопедия, 1988. — Т. 1: А — Дарзана. — 624 с.
  • Химическая энциклопедия / Гл. ред. И. Л. Кнунянц. — М.: Большая Российская энциклопедия, 1995. — Т. 4: Полимерные материалы — Трипсин. — 640 с. — ISBN 5-85270-092-4.