Структурная устойчивость

Материал из Википедии — свободной энциклопедии
Перейти к: навигация, поиск

В теории динамических систем, отображение f называется Ck-структурно устойчивым, если любое Ck-близкое к нему отображение g топологически сопряжено ему некоторым гомеоморфизмом h, близким к тождественному:


g = h \circ f \circ h^{-1}

Иными словами, динамика g отличается от динамики f только (непрерывной) заменой координат.

Если гладкость k не указана явно, по умолчанию считается, что речь идёт о C1-возмущениях. Стоит отметить, что замена h почти никогда не может оказаться гладкой: малым возмущением можно изменить собственные значения в неподвижных и периодических точках, которые являются инвариантами гладкого сопряжения.

В двумерном случае малое шевеление приводит любое состояние к структурно устойчивому. В 3- и более мерных случаях такое верно не всегда.

Аносов открыл, что существуют структурно устойчивые хаотические системы.

Пример: Системы Морса-Смейла (англ.) структурно устойчивы.

Ссылки[править | править вики-текст]

  • А. Б. Каток, Б. Хасселблат. Введение в современную теорию динамических систем = Introduction to the Modern Theory of Dynamical Systems / пер. с англ. А. Кононенко при участии С. Ферлегера. — М.: Факториал, 1999. — 768 с. — ISBN 5-88688-042-9