Сульфид кадмия

Материал из Википедии — свободной энциклопедии
Перейти к навигации Перейти к поиску
Сульфид кадмия
Общие
Систематическое
наименование
сульфид кадмия
Традиционные названия сернистый кадмий; как пигмент: кадмиевая желть, кадмиевый жёлтый
Хим. формула CdS
Рац. формула CdS
Физические свойства
Состояние кристаллическое
Молярная масса 144,46 г/моль
Плотность 4,82 г/см³
Термические свойства
Температура
 • плавления 1748 °C (гексаг.) [1]
 • сублимации 980 °C
Энтальпия
 • образования −144 кДж/моль
Химические свойства
Растворимость
 • в воде нерастворим
Структура
Кристаллическая структура цинковой обманки
a = 0.58320 нм;[2]
вюрцита
a = 0.41348 нм, c = 0.6749 нм;[2]
Классификация
Рег. номер CAS 1306-23-6
PubChem
Рег. номер EINECS 215-147-8
SMILES
InChI
RTECS EV3150000
ChEBI 50833
Номер ООН 2570
ChemSpider
Безопасность
Фразы риска (R) R45, R22, R48/23/25, R62, R63, R68, R53
Фразы безопасности (S) S53, S45, S61
NFPA 704
NFPA 704 four-colored diamondОгнеопасность 0: Негорючее веществоОпасность для здоровья 2: Интенсивное или продолжительное, но не хроническое воздействие может привести к временной потере трудоспособности или возможным остаточным повреждениям (например, диэтиловый эфир)Реакционноспособность 0: Стабильно даже при действии открытого пламени и не реагирует с водой (например, гелий)Специальный код: отсутствует
0
2
0
Приведены данные для стандартных условий (25 °C, 100 кПа), если не указано иное.
Логотип Викисклада Медиафайлы на Викискладе

Сульфи́д ка́дмия — химическое соединение кадмия и серы с формулой CdS. Сульфид кадмия существует в виде минералов гринокит и хоулиит, которые встречаются в виде жёлтых налетов на сфалерите (ZnS) и смитсоните.

Распространение в природе[править | править код]

На территории бывшего СССР хоулитсодержащие руды встречаются в Алтын-Топкан в Узбекистане. Гринокит, как правило, обнаруживается в ксантохроите в виде рентгеноаморфной разности[3]. Минералы гринокит и хоулиит не широко распространены в природе, поэтому для промышленного использования и научно-технических работ сульфид кадмия получают путём синтеза.

Структурные свойства[править | править код]

Сульфид кадмия кристаллизуется в двух основных модификациях — сфалерит (цинковая обманка) и вюрцит. Для гринокита характерна гексагональная структура вюрцита. Он имеет желтоватый цвет с удельной массой 4,7 г/см³ и твердостью Мооса 3,8. Хоулиит имеет кубическую структуру сфалерита (цинковой обманки).

Применение[править | править код]

Пигменты[править | править код]

Пигменты на основе сульфида кадмия ценятся за их хорошую температурную стабильность во многих полимерах, например, конструкционных пластмассах. При замещении части атомов серы селеном в кристаллах CdS можно получать самые разнообразные цвета красителей от зелёно-жёлтого до красно-фиолетового. Климатическая устойчивость для этого красителя равна 8, то есть он устойчив к солнечному ультрафиолетовому излучению. Краска на основе сульфида кадмия называется кадмиевая желть, кадмиевый жёлтый или просто кадмий.

Оптоэлектроника и люминесценция[править | править код]

Сульфид кадмия является широкозонным полупроводником с шириной запрещённой зоны 2,42 эВ при 300 K. Это свойство CdS используется в оптоэлектронике, как в фотоприёмниках, так и в солнечных батареях. Сульфид кадмия используют для изготовления фоторезисторов (приборов, электрическое сопротивление которых меняется в зависимости от освещенности). Сульфид кадмия применяется в качестве люминофора (также в смеси с сульфидом цинка и прочими примесями).

Регистрация элементарных частиц[править | править код]

Из монокристаллов сульфида кадмия изготавливают сцинтилляторы для регистрации элементарных частиц и гамма-излучения.

Лазерная техника[править | править код]

Монокристаллы сульфида кадмия могут использоваться в качестве рабочего тела твердотельных лазеров[4][5].

Пьезо- и пироэлектрика[править | править код]

Обе кристаллические модификации CdS (кубическая и гексагональная) проявляют пьезоэлектрические свойства, а гексагональная, кроме того, — пироэлектрические[6].

Нанотехнологии[править | править код]

На основе сульфида кадмия создают наноструктурированные материалы (квантовые точки, нанопроволоки, нанотрубки и т. д.), то есть обычные соединения, синтезированные в искусственно созданных границах «ограниченной геометрии». Такие материалы находят применение в медицине и биологии в качестве люминесцентных меток. Также они могут использоваться в оптоэлектронике, лазерах, светодиодах, QD-LED дисплеях и т. д.

Ссылки[править | править код]

Примечания[править | править код]

  1. Георгобиани А. Н., Шейнкман М. К. (ред.). Физика соединений AIIBVI. — Учеб. пособие. — Москва: Наука, 1986. — С. 284.
  2. 1 2 Георгобиани А. Н., Шейнкман М. К. (ред.). Физика соединений AIIBVI. — Учеб. пособие. — Москва: Наука, 1986. — С. 289.
  3. Яхонтова Л. К., Зверева В. П. Основы минералогии гипергенеза.. — Учеб. пособие. — Владивосток: Дальнаука, 2000. — С. 331. — ISBN 5-7442-1235-3. Архивировано 2 апреля 2015 года.
  4. Akimov Yu. A. et al. KGP-2: AN ELECTRON-BEAM-PUMPED CADMIUM SULFIDE LASER (англ.) // Soviet Journal of Quantum Electronics  (англ.) : journal. — 1972. — Vol. 2, no. 3. — P. 284. — doi:10.1070/QE1972v002n03ABEH004443.
  5. Agarwal R. et al. Lasing in Single Cadmium Sulfide Nanowire Optical Cavities (англ.) // Nano Letters  (англ.) : journal. — 2005. — Vol. 5, no. 5. — P. 917—920. — doi:10.1021/nl050440u. — arXiv:cond-mat/0412144v1. — PMID 15884894.
  6. Minkus W. Temperature Dependence of the Pyroelectric Effect in Cadmium Sulfide (англ.) // Physical Review : journal. — 1965. — Vol. 138, no. 4A. — P. A1277. — doi:10.1103/PhysRev.138.A1277.