Теорема Боголюбова — Парасюка

Материал из Википедии — свободной энциклопедии
Перейти к: навигация, поиск

Теорема Боголюбова — Парасюка утверждает, что перенормированные функции Грина и матричные элементы матрицы рассеяния в квантовой теории поля свободны от ультрафиолетовых расходимостей. Доказана Н. Н. Боголюбовым и О. С. Парасюком в 1955 году[1]. Впоследствии более простое доказательство теоремы было дано также в работе Аникина, Завьялова, Поливанова[2].

Значение в квантовой теории поля[править | править вики-текст]

Теорема гарантирует конечность вычисляемых по теории возмущений функций Грина и матричных элементов матрицы рассеяния, устанавливает математическую корректность процедуры вычитания ультрафиолетовых расходимостей, и гарантирует однозначность получаемых результатов в перенормируемых моделях квантовой теории поля.

Полностью решает вопрос о вычитании всех расходимостей в любом произвольно высоком порядке теории возмущений и дает конкретный рецепт такого вычитания в виде R-операции.

Примечания[править | править вики-текст]

  1. Н. Н. Боголюбов, О. С. Парасюк (1955). «К теории умножения причинных сингулярных функций». ДАН СССР 100: 25.
  2. С. А. Аникин, О. И. Завьялов, М. К. Поливанов. Одно простое доказательство теоремы Боголюбова — Парасюка. ТМФ, 1973, том 17, номер 2, стр. 189—198.

Литература[править | править вики-текст]