Теорема Менгера

Материал из Википедии — свободной энциклопедии
Перейти к: навигация, поиск

В теории графов и связанных с ней областях математики теорема Менгера — основной результат о связности в конечном неориентированном графе. Сформулирована и доказана в 1927 году Карлом Менгером (мл.).

Теорема Менгера о вершинной связности:

Пусть G — конечный неориентированный граф и x, y — две несмежные вершины. Наименьшее число вершин, разделяющих x и y равно наибольшему числу попарно независимых (x,y)-цепей.

[1]

Эквивалентная формулировка:

Пусть G — конечный неориентированный граф и x, y — две несмежные вершины. x и y k-отделимы тогда и только тогда, когда x и y k-соединимы.


Теорема Менгера о реберной связности:

Пусть G — конечный неориентированный граф и x, y — различные вершины. x и y реберно k-отделимы тогда и только тогда, когда x и y реберно k-соединимы.


  1. Харари Ф. Теория графов М.,2003