Теорема Штейнера — Лемуса

Материал из Википедии — свободной энциклопедии
Перейти к: навигация, поиск
|AE|=|BD|,\,\alpha=\beta,\,
\gamma=\delta

Теорема Штейнера — Лемуса

Если в треугольнике равны 2 биссектрисы, то этот треугольник является равнобедренным.

это с виду простое утверждение не имеет простого классического доказательства, хотя алгебраическое доказательство можно легко провести, используя формулу о длине биссектрисы l_c=\frac{\sqrt{4abp(p-c)}}{a+b}.

История доказательства[править | править вики-текст]

Впервые доказательство было дано в работах немецких геометров Штейнера и Лемуса. С тех пор это утверждение носит их имя.

В 1963 году журнал American Mathematical Monthly объявил конкурс на лучшее доказательство теоремы. Было прислано много доказательств, среди которых обнаружились интересные ранее неизвестные. Одно из лучших, по мнению редакции, приведено в [1]. Оно строится от противного, далее рассматривая окружность, проходящую через 4 точки.

В советской литературе распространено доказательство, основанное на следующем признаке равенства треугольников: если сторона, противолежащий этой стороне угол и биссектриса этого угла одного треугольника равны соответствующим элементам другого треугольника, то такие треугольники равны.

Вариации и обобщения[править | править вики-текст]

  • Аналогичная теорема для биссектрис внешних углов (отрезков биссектрис внешних углов, проведенных до продолжения сторон) неверна. Один из контрпримеров — треугольник Ботемы — с углами 12°, 132° и 36°. В нём отрезки биссектрис, внешних к первым двум углам, проведённых до пересечения с продолжениями сторон, равны стороне, соединяющей их вершины.

Литература[править | править вики-текст]

Примечания[править | править вики-текст]

  1. Коксетер Г. С. М., Грейтцер С. П. Новые встречи с геометрией. — М.: Наука, 1978. — Т. 14. — (Библиотека математического кружка).