Теоремы косинусов (сферическая геометрия)

Материал из Википедии — свободной энциклопедии
Перейти к: навигация, поиск
Сферический треугольник.

Первая и вторая сферические теоремы косинусов устанавливают соотношения между сторонами и противолежащими им углами сферического треугольника.

Формулировка[править | править вики-текст]

Теоремы косинусов для сферического треугольника со сторонами a, b, c и углами A, B, C имеют следующий вид:

~\cos c= \cos a \cos b + \sin a \sin b \cos C,
~\cos A = -\cos B\cos C + \sin B\sin C\cos a.

Эти две теоремы двойственны по отношению друг к другу, поскольку углы и стороны всякого сферического треугольника дополняются до развёрнутого угла сторонами и углами соответствующего полярного треугольника. Поэтому достаточно доказать одну из них.

Сферический треугольник для определения кратчайшего расстояния между точками на Земле.

Следствия и применение[править | править вики-текст]

Если угол C — прямой, первая теорема косинусов переходит в сферическую теорему Пифагора:

~\cos c= \cos a \cos b.

Хотя для решения косоугольных сферических треугольников обычно используются более удобные формулы, с помощью теоремы косинусов выводится важная для геодезии формула длины ортодромии — кратчайшего расстояния между точками на земной поверхности с известными координатами (в предположении сферичности Земли). Обозначим географические широты двух данных точек \varphi_A\, и \varphi_B\,, разность долгот — \Delta\lambda_{AB}\,, кратчайшее расстояние между ними обозначим d, длину дуги в 1 градус — a. Тогда формула длины ортодромии[2]:

\cos\left (\frac{d}{a}\right)=\sin\varphi_A\cdot\sin\varphi_B+\cos\varphi_A\cdot\cos\varphi_B\cdot\cos\Delta\lambda_{AB}

Эта формула сразу получается применением теоремы косинусов к стороне AB сферического треугольника PnAB. Подобная формула справедлива для любой сферической поверхности и поэтому её можно применять также для определения углового расстояния между звёздами по известным их экваториальным координатам[3].

Теорема косинусов в её втором виде (соотношение между тремя углами и стороной) может быть применена для вычисления взаимного наклонения двух орбит при известном наклонении каждой орбиты к какой-то другой плоскости. Например, по этой формуле можно вычислить наклонение орбиты Плутона к орбите Нептуна, используя наклонения их орбит к эклиптике и долготы их восходящих узлов.

История[править | править вики-текст]

Теорема косинусов для сферического треугольника математиками средневекового Востока в общем виде сформулирована не была, хотя при решении конкретных астрономических задач они иногда пользовались соотношениями, равносильными этой теореме. Эти соотношения, используемые при определении высоты Солнца, встречаются в сочинениях Сабита ибн Корры, ал-Махани, ал-Баттани, Ибн Юниса, ал-Бируни.

Впервые теорему косинусов в явном виде сформулировал в XV веке Региомонтан, назвав её «теоремой Альбатегния» (по латинизированному имени ал-Баттани).

См. также[править | править вики-текст]

Примечания[править | править вики-текст]

  1. Приводится по изданию: Степанов Н.Н. Формулы косинуса стороны // Сферическая тригонометрия. — М.—Л.: ОГИЗ, 1948. — С. 24—28. — 154 с.
  2. Михайлов В.С., Кудрявцев В.Г., Давыдов В.С. 26.2. Основные формулы ортодромии. Способы ее задания // Навигация и лоция. — Киев, 2009.
  3. Меёс Ж. 9. Угловое расстояние между объектами // Астрономические формулы для калькуляторов. — Мир, 1988. — С. 44—46. — 168 с. — ISBN 5030009361
  4. Lee Kai Ming PHYS 2021 — The Physical Universe. — 2010. — С. 6.

Литература[править | править вики-текст]

  • Матвиевская Г. П. Очерки истории тригонометрии. Ташкент: Фан, 1990.