Теория бифуркаций

Материал из Википедии — свободной энциклопедии
Перейти к: навигация, поиск

Теория бифуркаций динамических систем — это теория, которая изучает изменения качественной картины разбиения фазового пространства, в зависимости от изменения параметра (или нескольких параметров).

Обзор[править | править вики-текст]

Бифуркация — это приобретение нового качества в движениях динамической системы при малом изменении её параметров.

Центральным понятием теории бифуркации является понятие (не)грубой системы (см. ниже). Берётся какая-либо динамическая система и рассматривается такое (много)параметрическое семейство динамических систем, что исходная система получается в качестве частного случая — при каком-либо одном значении параметра (параметров). Если при значении параметров, достаточно близких к данному, сохраняется качественная картина разбиения фазового пространства на траектории, то такая система называется грубой. В противном случае, если такой окрестности не существует, то система называется негрубой.

« Здесь имеется в виду прежде всего плодотворная физическая и математическая идея А.А. Андронова о грубых системах, разработанная им при участии Л.С.Понтрягина. Грубая система — это такая, качественный характер движений которой не меняется при достаточно малом изменении параметров. Консервативные системы не являются грубыми: колебания идеального маятника без трения являются периодическими (не затухают); но периодичности нет при наличии уже сколь угодно малого трения. Всякий генератор незатухающих колебаний обладает характерными свойствами, которые не сохраняются при консервативной идеализации, но правильно отображаются понятием "грубая система".
Горелик, 1955[B: 1]
»

Таким образом в пространстве параметров возникают области грубых систем, которые разделяются поверхностями, состоящими из негрубых систем. Теория бифуркаций изучает зависимость качественной картины при непрерывном изменении параметра вдоль некоторой кривой. Схема, по которой происходит изменение качественной картины называется бифуркационной диаграммой.

Основные методы теории бифуркаций — это методы теории возмущений. В частности, применяется метод малого параметра (Понтрягина).

Бифуркация равновесий[править | править вики-текст]

В механических системах, как правило, установившиеся движения (положения равновесия или относительного равновесия) зависят от параметров. Значения параметров, при которых наблюдается изменение количества равновесий, называются их бифуркационными значениями. Кривые или поверхности, изображающие множества равновесий в пространстве состояний и параметров, называются бифуркационными кривыми или бифуркационными поверхностями. Прохождение параметра через бифуркационное значение, как правило, сопровождается изменением свойств устойчивости равновесий. Бифуркации равновесий могут сопровождаться рождением периодических и других, более сложных движений.

Основные понятия[править | править вики-текст]

См. в Литературе[B: 2][B: 3][B: 4].

См. также[править | править вики-текст]

Литература[править | править вики-текст]

  • Книги
  1. Горелик Г С, Айаерман М А Введение ("Жизнь и труды А А Андронова" и ) // Памяти Александра Александровича Андронова / Под ред. Леонтович, М.А. и др... — М.: Изд. АН СССР, 1955. — С. 3—19. — 718 с.
  2. Четаев Н. Г. Устойчивость движения. — М.: Наука, 1955.
  3. Андронов А. А., Леонтович Е. А., Гордон И. М., Майер А. Г. Теория бифуркаций динамических систем на плоскости. — М.: Наука, 1967.
  4. Баутин Н. Н., Леонтович Е. А. Методы и приёмы качественного исследования динамических систем на плоскости. — М.: Наука. Гл. ред. физ.-мат. лит., 1990. — 488 с. — (Справочная математическая библиотека).
  • Статьи


Ссылки[править | править вики-текст]