Теория графов

Материал из Википедии — свободной энциклопедии
Перейти к: навигация, поиск
Граф с шестью вершинами и семью рёбрами

Тео́рия гра́фов — раздел дискретной математики, изучающий свойства графов. В общем смысле граф представляется как множество вершин (узлов), соединённых рёбрами. В строгом определении графом называется такая пара множеств. G=(V,E), где V есть подмножество любого счётного множества, а E — подмножество V×V.

Теория графов находит применение, например, в геоинформационных системах (ГИС). Существующие или вновь проектируемые дома, сооружения, кварталы и т. п. рассматриваются как вершины, а соединяющие их дороги, инженерные сети, линии электропередачи и т. п. — как рёбра. Применение различных вычислений, производимых на таком графе, позволяет, например, найти кратчайший объездной путь или ближайший продуктовый магазин, спланировать оптимальный маршрут.

Теория графов содержит большое количество нерешённых проблем и пока не доказанных гипотез.

История возникновения теории графов[править | править вики-текст]

Родоначальником теории графов считается Леонард Эйлер. В 1736 году в одном из своих писем он формулирует и предлагает решение задачи о семи кёнигсбергских мостах, ставшей впоследствии одной из классических задач теории графов.

Терминология теории графов[править | править вики-текст]

Терминология теории графов поныне не определена строго. В частности в монографии Гудман, Хидетниеми, 1981 сказано: «В программистском мире нет единого мнения о том, какой из двух терминов „граф“ или „сеть“. Мы выбрали термин „сеть“, так как он, по-видимому, чаще встречается в прикладных областях». Аналогичная ситуация с терминами «вершина/точка».

Изображение графов на плоскости[править | править вики-текст]

При изображении графов на рисунках чаще всего используется следующая система обозначений: вершины графа изображаются точками или, при конкретизации смысла вершины, прямоугольниками, овалами и др., где внутри фигуры раскрывается смысл вершины (графы блок-схем алгоритмов). Если между вершинами существует ребро, то соответствующие точки (фигуры) соединяются линией или дугой. В случае ориентированного графа дуги заменяют стрелками, или явно указывают направленность ребра. Иногда рядом с ребром размещают поясняющие надписи, раскрывающие смысл ребра, например, в графах переходов конечных автоматов. Различают планарные и непланарные графы. Планарный граф — это граф, который можно изобразить на рисунке (плоскости) без пересечения рёбер (простейшие — треугольник или пара связанных вершин), иначе граф непланарный. В том случае, если граф не содержит циклов (содержащих по крайней мере один путь однократного обхода рёбер и вершин с возвратом в исходную вершину), его принято называть «деревом». Важные виды деревьев в теории графов — бинарные деревья, где каждая вершина имеет одно входящее ребро и ровно два выходящих, или является конечной — не имеющей выходящих рёбер и содержит одну корневую вершину, в которую нет входящего ребра.

Не следует путать изображение графа с собственно графом (абстрактной структурой), поскольку одному графу можно сопоставить не одно графическое представление. Изображение призвано лишь показать, какие пары вершин соединены рёбрами, а какие — нет. Часто на практике бывает трудно ответить на вопрос, являются ли два изображения моделями одного и того же графа или нет (другими словами, изоморфны ли соответствующие изображениям графы). В зависимости от задачи, одни изображения могут давать более наглядную картину, чем другие.

Некоторые задачи теории графов[править | править вики-текст]

К теории графов также относится целый ряд математических проблем, не решенных на сегодняшний день.

Применение теории графов[править | править вики-текст]

Литература[править | править вики-текст]

  • Химические приложения топологии и теории графов. Под ред. Р. Кинга. Пер. с англ. М.: Мир, 1987.


Примечания[править | править вики-текст]

  1. Г. С. Яблонский, В. И. Быков, А. Н. Горбань, Кинетические модели каталитических реакций, Новосибирск: Наука (Сиб. отделение), 1983.- 255 c.
  2. Курейчик В. М., Глушань В. М., Щербаков Л. И. Комбинаторные аппаратные модели и алгоритмы в САПР. М.: Радио и связь, 1990. 216 с.

См. также[править | править вики-текст]

Ссылки[править | править вики-текст]