Уравнение Власова

Материал из Википедии — свободной энциклопедии
Перейти к: навигация, поиск

Уравнение Власова — система уравнений, описывающих динамику плазмы заряженных частиц с учётом дальнодействующих кулоновских сил посредством самосогласованного поля. Впервые предложена А. А. Власовым в статье[1] и позднее излагается в монографии[2].

Проблемы газокинетического подхода[править | править вики-текст]

В своей работе Власов сначала указывает на неприменимость газокинетического подхода, основанного на уравнении Больцмана (предполагается, что интеграл столкновений зависит только от парных столкновений), к описанию динамики плазмы с кулоновским взаимодействием. Он отмечает следующие проблемы, возникающие при попытке применения теории основанной на парных столкновений к описанию плазмы:

  1. приближение парных столкновений не согласуется с исследованиями Рэлея и Ленгмюра и Тонкса, которые предсказали и исследовали ленгмюровские волны в электронной газовой плазме.[3][4]
  2. приближение парных столкновений формально не применимо к кулоновскому взаимодействию из-за расходимости полного сечения рассеивания.
  3. приближение парных столкновений не позволяет объяснить эксперименты Меррилла и Вебба об аномальном рассеянии электронов в газовой плазме.[5]

В качестве причины возникновения этих проблем Власов указывает на дальнодействующий характер кулоновских сил, что приводит к взаимодействию каждой из частиц с совокупностью других частиц. Дальнодействие в этом случае означает, что радиус влияния этой силы больше чем среднее расстояние между частицами.

Уравнения Власова — Максвелла[править | править вики-текст]

Власов изначально рассматривал систему общих уравнений плазмы, включающих три компоненты (электроны, ионы и нейтральные атомы), и записывал уравнение Больцмана для s-ой компоненты плазмы в виде

\frac{\partial f_s}{\partial t}  + \mathrm{div}_{\mathbf{r}}\vec{v} f_s +\frac{e_s}{m_s}\left(\vec{E}+\frac{1}{c}[\vec{v},\vec{B}]\right)\mathrm{grad}_{\mathbf{v}}f_s  = \left[\frac{\partial f_s}{\partial t}\right]^{st}_{s1}+\left[\frac{\partial f_s}{\partial t}\right]^{st}_{s2}+\left[\frac{\partial f_s}{\partial t}\right]^{st}_{s3}.

где f_s(\vec{r},\vec{p},t) — функция распределения. Эта система уравнений включала также уравнения Максвелла, и уравнения для заряда и тока выраженные через функции распределения f_s. Так как Власов интересовался только волновыми решениями, то он пренебрёг вкладами интегралов столкновений, поскольку по оценкам выходило, что частоты плазменных волн много больше частот парных столкновений частиц в плазме. То есть вместо описания взаимодействия заряженных частиц в плазме посредством столкновений, предложил использовать самосогласованное поле, созданное заряженными частицами плазмы для описания длиннодействующего потенциала. Вместо уравнения Больцмана Власов предлагает использовать следующую систему уравнений для описания заряженных компонент плазмы (электронов с функцией распределений f_e(\vec{r},\vec{p},t) и положительных ионов с функцией распределения f_i(\vec{r},\vec{p},t)):

\frac{\partial f_e}{\partial t}  + \vec{v} \frac{\partial f_e}{\partial\vec{x}} - e\Bigl(\vec{E}+\frac{1}{c}[\vec{v},\vec{B}]\Bigr) \frac{\partial f_e}{\partial\vec{p}} = 0

\frac{\partial f_i}{\partial t}  + \vec{v} \frac{\partial f_i}{\partial \vec{x}} + e\Bigl(\vec{E}+\frac{1}{c}[\vec{v},\vec{B}]\Bigr) \frac{\partial f_i}{\partial \vec{p}} = 0

{\rm rot}\vec{B}=\frac{4\pi\vec{j}}{c}+\frac{1}{c}\frac{\partial\vec{E}}{\partial t},\quad {\rm rot}\vec{E}=-\frac{1}{c}\frac{\partial\vec{B}}{\partial t}

{\rm div}\vec{E}=4\pi\rho,\quad {\rm div}\vec{B}=0

\rho=e\int(f_i-f_e)d^3\vec{p},\quad \vec{j}=e\int(f_i-f_e)\vec{v}d^3\vec{p}

Здесь e — заряд электрона, c — скорость света, \vec{E}(\vec{r},t) и \vec{B}(\vec{r},t) — самосогласованные электрическое и магнитное поля, созданные в точке \vec{r} в момент времени t всеми заряженными частицами плазмы. Существенное отличие этой системы уравнений от уравнений движения заряженных частиц во внешнем электромагнитном поле в том, что само самосогласованное электромагнитное поле сложным образом зависит от функций распределения ионов и электронов.

Уравнения Власова — Пуассона[править | править вики-текст]

Уравнения Власова — Максвелла являются системой нелинейных интегро-дифференциальных уравнений. Если флуктуации функций распределения относительно равновесного состояния невелики, эта система уравнений может быть линеаризована. Линеаризация даст систему уравнений Власова — Пуассона, описывающую динамику плазмы в самосогласованном электростатическом поле. Уравнения Власова — Пуассона являются системой уравнений Власова для каждой компоненты плазмы (рассматриваем нерелятивистский предел):

\frac{\partial f_{\alpha}}{\partial t} + \vec{v} \cdot \frac{\partial f_{\alpha}}{\partial \vec{x}} + \frac{q_{\alpha}\vec{E}}{m_{\alpha}} \cdot \frac{\partial f_{\alpha}}{\partial \vec{v}} = 0,

и уравнения Пуассона для самосогласованного электрического поля:

\nabla \cdot \vec{E} = -\Delta\phi = 4 \pi \rho.

Здесь q_{\alpha} — электрический заряд и m_{\alpha} — масса частиц плазмы, \vec{E}(\vec{x},t) — самосогласованное электрическое поле, \phi(\vec{x}, t) — потенциал самосогласованного электрического поля и \rho — плотность электрического заряда.

Примечания[править | править вики-текст]

  1. А. А. Власов. О вибрационных свойствах электронного газа // Журнал экспериментальной и теоретической физики. — 1938. — Т. 8 (3). — С. 291.
  2. А. А. Власов. Теория вибрационных свойств электронного газа и ее приложения // Уч. зап. МГУ. — 1945. — В. 75. Кн. 2. Ч. 1.
  3. Rayleigh , Phil. Mag. 11, 117 (1906).
  4. I. Langmuir and L. Τοnks, Phys. Rev 33, 195 (1929).
  5. H. J. Merrill and H. W. Webb (1939). «Electron Scattering and Plasma Oscillations». Physical Review 55 (12). DOI:10.1103/PhysRev.55.1191. Bibcode1939PhRv...55.1191M.

Литература[править | править вики-текст]

  • И. П. Базаров, П. Н. Николаев. Анатолий Александрович Власов. — Физический факультет МГУ. — М., 1999. — С. 19—26. — (Выдающиеся учёные физического факультета МГУ). — Подробное обсуждение уравнений Власова.