Финансовая математика

Материал из Википедии — свободной энциклопедии
Перейти к: навигация, поиск

Финансовая математика — раздел прикладной математики, имеющий дело с математическими задачами, связанными с финансовыми расчётами. В финансовой математике любой финансовый инструмент рассматривается с точки зрения генерируемого этим инструментом некоторого (возможно случайного) денежного потока.

Основные направления:

Задача классической финансовой математики сводится к сопоставлению денежных потоков от различных финансовых инструментов исходя из критериев временной ценности денег (с учётом фактора дисконтирования), оценка эффективности вложений в те или иные финансовые инструменты (включая оценку эффективности инвестиционных проектов), разработка критериев отбора инструментов. В классической финансовой математике по умолчанию предполагается детерминированность процентных ставок и потоков платежей.

Стохастическая финансовая математика имеет дело с вероятностными платежами и ставками. Основная задача состоит в получении адекватной оценки инструментов с учётом вероятностного характера рыночных условий и потока платежей от инструментов. Формально сюда можно отнести оптимизацию портфеля инструментов в рамках средне-дисперсионного анализа. Также на моделях стохастической финансовой математики основаны методы оценки финансовых рисков. При этом в стохастической финансовой математике возникает необходимость определить критерии оценки рисков в том числе для адекватной оценки финансовых инструментов.

Основные концепции, подходы и методы финансовой математики[править | править вики-текст]

Наращение процентов и дисконтирование денежных потоков[править | править вики-текст]

Наращение процентов[править | править вики-текст]

Расчётные процедуры финансовой математики основаны на принципах начисления процентов на вложенные средства. Простые проценты не предполагают реинвестирования получаемых процентов. Поэтому суммарная стоимость FV, получаемая за время t при вложении суммы PV, определяется линейно FV_t=PV (1+i t).

Однако, чаще всего финансовая математика имеет дело со сложными процентами, когда учитывается реинвестирование (капитализация) получаемых процентов. В таком случае формула будущей стоимости принимает экспоненциальный вид:

FV_t = PV (1+i)^t = PV e^{r t}~,~~r = \ln (1+i)

где r — непрерывная или логарифмическая ставка. Последняя запись сложных процентов бывает удобна в аналитических целях.

В финансовой практике принято задавать годовые процентные ставки, начисление и капитализация при этом могут происходить чаще 1 раза в год. Если капитализация процентов происходит m раз в году, то формула будущей стоимости принимает вид

FV_t=PV (1+i/m)^{m t} = PV(1+i_e)^t

где i_e = (1+i/m)^m-1 — эффективная годовая ставка процента.

По эффективной ставке можно сравнивать различные варианты вложения средств с различными номинальными ставками и периодами капитализации процентов. При m \rightarrow \infty имеем непрерывное начисление и формула принимает вид FV_t=PV e^{rt}. Эта формула эквивалентна вышеприведенной формуле для сложных процентов при ставке r равной логарифмической ставке.

Будущая и текущая стоимость[править | править вики-текст]

Базовое предположение в финансовой математике заключается в том, что в экономике существует возможность вложения любой суммы в некий (альтернативный) инструмент (по умолчанию — банковский депозит) под некоторую сложную ставку i. На основе принципов наращения сложных процентов по этой ставке i каждой денежной сумме (стоимости) в данный момент времени ставится в соответствие будущая стоимость на момент времени t (FV_t), а каждой сумме FV_t ставится в соответствие текущая (приведенная, дисконтированная) стоимость (PV):

FV_t=PV(1+i)^t~,~ ~PV=\frac {FV_t}{(1+i)^t}=FV_t(1+i)^{-t}

Процесс приведения будущей стоимости к текущей называется дисконтированием. Ставку (доходность)альтернативного вложения i — ставкой дисконтирования.

Более обобщенно, сумме в момент времени t_1 можно поставить в соответствие сумму в момент времени t_2:

S_{t_2}=S_{t_1}(1+i)^{t_2-t_1}

Причем данная формула справедлива как в случае t_2>t_1, так и t_2<t_1. Суммы, относящиеся или приведенные к одному моменту времени сопоставимы. Исходя из этого возникает концепция временной стоимости (ценности) денег, сущность которой заключается в разной ценности одинаковых сумм в разные моменты времени. Дисконтирование этих сумм (приведение к одному моменту времени) по одинаковой ставке позволяет сопоставлять суммы для разных моментов времени (различные денежные потоки) между собой.

Если задан денежный поток CF=(CF_{t_1}, ... , CF_{t_k}, ...,CF_{t_n} ), то будущая стоимость в момент времени t>t_n вложений данного потока денег (в соответствующие моменты времени) будет суммой будущих стоимостей отдельных составляющих потока (предполагается, что денежный поток генерируется определенным финансовым инструментом или инвестиционным проектом или бизнесом в целом, и в то же время существует возможность вложить средства в альтернативный инструмент с фиксированной доходностью, равной ставке дисконтирования):

FV_t=\sum^n_{k=1}  {CF_{t_k}} (1+i)^{t-t_k}

Данной сумме FV_t можно поставить в соответствие сумму в текущий момент времени в соответствии с общим правилом дисконтирования:

PV=FV_t /(1+i)^t=\sum^n_{k=1}  {CF_{t_k}} (1+i)^{t-t_k}/(1+i)^t=\sum_{k=1}^n \frac {CF_{t_k}} {(1+i)^{t_k}}

В предельном случае следует рассматривать непрерывный денежный поток с плотностью CF(t), тогда текущая стоимость непрерывного денежного потока будет равна следующему интегралу:

PV=\int_0^{\infty}CF(t)e^{-rt}dt

Таким образом, каждому денежному потоку ставится в соответствие его текущая (приведенная, дисконтированная) стоимость по ставке дисконтирования.

Для аннуитетов на основе формулы геометрической прогрессии получаем следующую формулу приведенной стоимости PV_i=a  \frac {1-(1+i)^{-t}} {i} . Для вечного аннуитета (то есть при t \rightarrow \infty) получаем простое выражение PV=a/i . В случае бесконечного денежного потока с постоянным темпом роста получаем формулу Гордона PV=\frac {CF_1} {i-g}

Эффективная (внутренняя) доходность[править | править вики-текст]

Если финансовый инструмент имеет некую оценку стоимости, например, рыночную цену, цену покупки и т. д., то зная денежный поток от инструмента можно оценить его эффективную (внутреннюю) доходность как ставку дисконтирования, при которой приведенная стоимость будет равна фактической цене инструмента, то есть решение уравнения P=PV(i) по ставке i. Данный показатель по разному может называться в зависимости от рассматриваемой задачи и инструментов. Например, для облигаций — это доходность к погашению (YTM), для инвестиционных проектов — внутренняя ставка доходности (IRR).

Дюрация денежного потока[править | править вики-текст]

Значение приведенной стоимости является нелинейной функцией ставки дисконтирования. Соответственно полностью денежный поток характеризуется графиком приведенной стоимости по ставке дисконтирования. Чувствительность (эластичность) приведенной стоимости к изменению процентной ставки (логарифмическая производная по 1+i) оказывается равной дюрации денежного потока — средневзвешенному сроку денежного потока (весами являются доли приведенных стоимостей отдельных составляющих потока в приведенной стоимости всего потока).

D=-\frac {\partial \ln PV} {\partial \ln(1+i)}=\frac {\sum^n_{k=1}\frac {CF_{t_k}t_k} {(1+i)^{t_k}}} {\sum^n_{k=1} \frac {CF_{t_k}} {(1+i)^{t_k}}}= \overline{T}

В первом приближении в качестве дюрации можно использовать средневзвешенный срок денежного потока без учёта дисконтирования (то есть с нулевой ставкой дисконтирования). Дюрацию можно использовать для упрощенной оценки изменения текущей стоимости финансового инструмента при небольшом изменении ставки дисконтирования. Также дюрацию можно интерпретировать иначе — это приблизительно тот период, за который можно получить суммарную величину денежного потока, если вложить под ставку дисконтирования сумму, равную текущей стоимости этого денежного потока. В частном случае бескупонной облигации дюрация совпадает со сроком такой облигации. В случае вечного аннуитета дюрация равна (1+i)/i

Для уточнения оценки влияния изменения процентной ставки иногда наряду с дюрацией используют также поправку второго порядка — выпуклость. Она равна \overline{T^2}+\overline{T}. В первом приближении можно принять ее равной D^2+D.

Портфельная теория[править | править вики-текст]

Оптимизация портфеля обычно рассматривается в рамках средне-дисперсионного анализа. Впервые данный подход к формированию портфелей предложил Гарри Марковиц (впоследствии лауреат Нобелевской премии). В рамках данного подхода доходности инструментов предполагаются случайными величинами с некоторым средним уровнем (математическое ожидание), волатильностью (дисперсией) и ковариациями между доходностями инструментов. Дисперсия доходности является мерой риска вложений в данный инструмент или в порфтель. Хотя формально подход применим при любом распределении доходностей, результаты могут быть лучше для нормального распределения, в связи с тем, что математическое ожидание и ковариационная матрица полностью характеризуют нормальное распределение.

Формулировки и решения задачи различаются в зависимости от тех или иных допущений, в частности, возможности отрицательных долей инструментов в портфеле (т. н. «короткие продажи»), наличия безрискового актива с нулевой дисперсией и корреляцией с другими активами и т. д. Задача может быть сформулирована как минимизация дисперсии портфеля при требуемой средней доходности и других ограничениях или же максимизацию доходности при заданном уровне риска (дисперсии). Также возможны иные формулировки, предполагающие максимизацию или минимизацию комплексных целевых функций, учитывающих и доходность и риск.

На основе портфельной теории Марковица в дальнейшем была разработана современная теория ценообразования финансовых активов — CAPM (Capital Assets Pricing Model).

Стохастические модели[править | править вики-текст]

Стохастические модели с дискретным временем[править | править вики-текст]

Базовая модель динамики цен финансовых инструментов — модель геометрического броуновского движения, согласно которой доходности (непрерывные, логарифмические) инструментов подчиняются процессу случайного блуждания:

r_t=\ln p_t-\ln p_{t-1}=\ln {\frac {p_t} {p_{t-1}}}=\varepsilon_t

где \varepsilon_t — белый шум

Данная модель удовлетворяет гипотезе эффективного рынка. В рамках данной гипотезы предполагается невозможность прогнозирования доходностей на будущие периоды на основании какой-либо информации, в том числе на основании информации о прошлых значениях доходностей.

В моделях ARIMA предполагается возможность прогнозирования доходностей на основе прошлых значений доходностей.

Модели GARCH предназначены для моделирования условной волатильности доходностей. Данные модели объясняют «толстые хвосты» распределения доходностей, а также кластеризацию волатильности, которые наблюдаются на практике. В некоторых моделях также учитывается возможность асимметрии уровня волатильности при снижении и при повышении рынка.

Имеются также иные подходы к моделированию волатильности — Модели стохастической волатильности.

Стохастические модели с непрерывным временем[править | править вики-текст]

  • Модели, основанные на броуновском движении
 dS_t = \mu S_t\, dt + \sigma S_t\, dW_t

где W_t стандартное броуновское движение (винеровский процесс)

Литература[править | править вики-текст]

  • Малыхин В. И. Финансовая математика: Учеб. пособие для вузов. — М.: ЮНИТИ-ДАНА, 2003. — 237 с. — ISBN 5-238-00559-8.
  • Ширяев А. Н. Основы стохастической финансовой математики. — М.: ФАЗИС, 1998. — Т. 1. Факты. Модели. — 512 с. — ISBN 5-7036-0043-X.
  • Ширяев А. Н. Основы стохастической финансовой математики. — М.: ФАЗИС, 1998. — Т. 2. Теория. — 512 с. — ISBN 5-7036-0043-8.
  • Martin W. Baxter, Andrew J. O. Rennie. Financial Calculus. An introduction to derivative pricing. Cambridge University Press, Cambridge 2001. ISBN 0-521-55289-3
  • Hans-Peter Deutsch. Derivate und Interne Modelle. Schäffer-Poeschel Verlag, Stuttgart 2004. ISBN 3-7910-2211-3
  • Michael Günther, Ansgar Jüngel. Finanzderivate mit MATLAB. Mathematische Modellierung und numerische Simulation. Vieweg, Wiesbaden 2003. ISBN 3-528-03204-9
  • John C. Hull. Options, Futures, and Other Derivatives Pearson US Imports & PHIPEs 2002 (5. Aufl.). ISBN 0-13-046592-5
  • Jürgen Kremer. Einführung in die diskrete Finanzmathematik. Springer, Berlin 2005. ISBN 3-540-25394-7
  • Volker Oppitz, Volker Nollau. Taschenbuch Wirtschaftlichkeitsrechnung. Carl Hanser Verlag, München 2003. ISBN 3-446-22463-7
  • Volker Oppitz. Gabler Lexikon Wirtschaftlichkeitsberechnung. Gabler, Wiesbaden 1995. ISBN 3-409-19951-9
  • Paul Wilmott. Paul Wilmott on Quantitative Finance. John Wiley, Chichester 2000. ISBN 0-471-87438-8