Флеш-память

Материал из Википедии — свободной энциклопедии
Перейти к: навигация, поиск
USB-флеш-накопитель. На переднем плане видна микросхема NAND флеш-памяти, на заднем её контроллер.
Типы компьютерной памяти
Энергозависимая
Энергонезависимая

Флеш-память (англ. flash memory) — разновидность полупроводниковой технологии электрически перепрограммируемой памяти (EEPROM). Это же слово используется в электронной схемотехнике для обозначения технологически законченных решений постоянных запоминающих устройств в виде микросхем на базе этой полупроводниковой технологии. В быту это словосочетание закрепилось за широким классом твердотельных устройств хранения информации.


Благодаря компактности, дешевизне, механической прочности, большому объёму, скорости работы и низкому энергопотреблению, флеш-память широко используется в цифровых портативных устройствах и носителях информации. Серьёзным недостатком данной технологии является ограниченный срок эксплуатации носителей,[1][2] а также чувствительность к электростатическому разряду.

История

Предшественниками технологии флеш-памяти можно считать ультрафиолетово стираемые постоянные запоминающие устройства (EPROM) и электрически стираемые ПЗУ (EEPROM). Эти приборы также имели матрицу транзисторов с плавающим затвором, в которых инжекция электронов в плавающий затвор («запись») осуществлялась созданием большой напряженности электрического поля в тонком диэлектрике. Однако площадь разводки компонентов в матрице резко увеличивалась, если требовалось создать поле обратной напряжённости для снятия электронов с плавающего затвора («стирания»). Поэтому и возникло два класса устройств: в одном случае жертвовали цепями стирания, получая память высокой плотности с однократной записью, а в другом случае делали полнофункциональное устройство с гораздо меньшей ёмкостью.

Соответственно усилия инженеров были направлены на решение проблемы плотности компоновки цепей стирания. Они увенчались успехом изобретением инженера компании Toshiba Фудзио Масуокой в 1984 году. Название «флеш» было придумано также в Toshiba коллегой Фудзио, Сёдзи Ариидзуми, потому что процесс стирания содержимого памяти ему напомнил фотовспышку (англ. flash). Масуока представил свою разработку на IEEE 1984 International Electron Devices Meeting (IEDM), проходившей в Сан-Франциско, Калифорния.

В 1988 году Intel выпустила первый коммерческий флеш-чип NOR-типа.

NAND-тип флеш-памяти был анонсирован Toshiba в 1989 году на International Solid-State Circuits Conference.

Принцип действия[3]

Принцип работы полупроводниковой технологии флеш-памяти основан на изменении и регистрации электрического заряда в изолированной области («кармане») полупроводниковой структуры.

Изменение заряда («запись» и «стирание») производится приложением между затвором и истоком большого потенциала, чтобы напряженность электрического поля в тонком диэлектрике между каналом транзистора и карманом оказалась достаточна для возникновения туннельного эффекта. Для усиления эффекта туннелирования электронов в карман при записи применяется небольшое ускорение электронов путём пропускания тока через канал полевого транзистора (явление инжекции горячих носителей).

Чтение выполняется полевым транзистором, для которого карман выполняет роль затвора. Потенциал плавающего затвора изменяет пороговые характеристики транзистора, что и регистрируется цепями чтения.

Эта конструкция снабжается элементами, которые позволяют ей работать в большом массиве таких же ячеек.

NOR- и NAND-приборы

Различаются методом соединения ячеек в массив и алгоритмами чтения-записи.

Конструкция NOR использует классическую двумерную матрицу проводников, в которой на пересечении строк и столбцов установлено по одной ячейке. При этом проводник строк подключался к стоку транзистора, а столбцов — ко второму затвору. Исток подключался к общей для всех подложке. В такой конструкции было легко считать состояние конкретного транзистора, подав положительное напряжение на один столбец и одну строку.

Конструкция NAND — трёхмерный массив. В основе та же самая матрица, что и в NOR, но вместо одного транзистора в каждом пересечении устанавливается столбец из последовательно включенных ячеек. В такой конструкции получается много затворных цепей в одном пересечении. Плотность компоновки можно резко увеличить (ведь к одной ячейке в столбце подходит только один проводник затвора), однако алгоритм доступа к ячейкам для чтения и записи заметно усложняется.

Технология NOR позволяет получить быстрый доступ индивидуально к каждой ячейке, однако площадь ячейки велика. Наоборот, NAND имеют малую площадь ячейки, но относительно длительный доступ сразу к большой группе ячеек. Соответственно, различается область применения: NOR используется как непосредственная память программ микропроцессоров и для хранения небольших вспомогательных данных.

Названия NOR и NAND произошли от ассоциации схемы включения ячеек в массив со схемотехникой микросхем КМОП-логики.

Существовали и другие варианты объединения ячеек в массив, но они не прижились.

SLC- и MLC-приборы

Различают приборы, в которых элементарная ячейка хранит один бит информации и несколько бит. В однобитовых ячейках различают только два уровня заряда на плавающем затворе. Такие ячейки называют одноуровневыми (single-level cell, SLC). В многобитовых ячейках различают больше уровней заряда; их называют многоуровневыми (multi-level cell, MLC[4][5]). MLC-приборы дешевле и более ёмкие, чем SLC-приборы, однако с большим временем доступа и меньшим максимальным количеством перезаписей.

Обычно под MLC понимают память с 4 уровнями заряда (2 бита) на каждую ячейку. Память с 8 уровнями (3 бита) иногда называют TLC (Triple Level Cell)[4][5] или 3bit MLC[6], с 16 уровнями (4 бита) — 16LC.[7]

Аудиопамять

Естественным развитием идеи MLC ячеек была мысль записать в ячейку аналоговый сигнал. Наибольшее применение такие аналоговые флеш-микросхемы получили в воспроизведении звука. Такие микросхемы получили широкое распространение во всевозможных игрушках, звуковых открытках и т. д.[8]

Многокристальные микросхемы

Часто[источник не указан 510 дней] в одну микросхему флеш-памяти упаковывается несколько полупроводниковых пластин (кристаллов), до 8-16 штук.[9]

Технологические ограничения

Запись и чтение ячеек различаются в энергопотреблении: устройства флеш-памяти потребляют большой ток при записи для формирования высоких напряжений, тогда как при чтении затраты энергии относительно малы.

Ресурс записи

Изменение заряда сопряжено с накоплением необратимых изменений в структуре и потому количество записей для ячейки флеш-памяти ограничено (обычно до 10 тыс. раз для MLC-устройств и до 100 тыс. раз для SLC-устройств).

Одна из причин деградации — невозможность индивидуально контролировать заряд плавающего затвора в каждой ячейке. Дело в том, что запись и стирание производятся над множеством ячеек одновременно — это неотъемлемое свойство технологии флеш-памяти. Автомат записи контролирует достаточность инжекции заряда по референсной ячейке или по средней величине. Постепенно заряд отдельных ячеек рассогласовывается и в некоторый момент выходит за допустимые границы, которые может скомпенсировать инжекцией автомат записи и воспринять устройство чтения. Понятно, что на ресурс влияет степень идентичности ячеек. Одно из следствий этого — с уменьшением топологических норм полупроводниковой технологии создавать идентичные элементы все труднее, поэтому вопрос ресурса записи становится все острее.

Другая причина — взаимная диффузия атомов изолирующих и проводящих областей полупроводниковой структуры, ускоренная градиентом электрического поля в области кармана и периодическими электрическими пробоями изолятора при записи и стирании. Это приводит к размыванию границ и ухудшению качества изолятора, уменьшению времени хранения заряда.

Идут исследования технологии восстановления ячейки флеш-памяти путём локального нагрева изолятора затвора до 800°С в течение нескольких миллисекунд.[10]

Срок хранения данных

Изоляция кармана неидеальна, заряд постепенно изменяется. Срок хранения заряда, заявляемый большинством производителей для бытовых изделий, не превышает 10—20 лет,[источник не указан 424 дня] хотя гарантия на носители дается не более чем на 5 лет. При этом память MLC имеет меньшие сроки, чем SLC.

Специфические внешние условия, например, повышенные температуры или радиационное облучение (гамма-радиация и частицы высоких энергий), могут катастрофически сократить срок хранения данных.

У современных микросхем NAND при чтении возможно повреждение данных на соседних страницах в пределах блока. Осуществление большого числа (сотни тысяч и более) операций чтения без перезаписи может ускорить возникновение ошибки.[11][12]

По данным Dell, длительность хранения данных на SSD, отключенных от питания, сильно зависит от количества прошедших циклов перезаписи (P/E) и от типа флеш-памяти и в худших случаях может составлять 3-6 месяцев.[13][12]

Иерархическая структура

Стирание, запись и чтение флеш-памяти всегда происходит относительно крупными блоками разного размера, при этом размер блока стирания всегда больше чем блок записи, а размер блока записи не меньше, чем размер блока чтения. Собственно, это — характерный отличительный признак флеш-памяти по отношению к классической памяти EEPROM.

Как следствие — все микросхемы флеш-памяти имеют ярко выраженную иерархическую структуру. Память разбивается на блоки, блоки состоят из секторов, секторы из страниц. В зависимости от назначения конкретной микросхемы глубина иерархии и размер элементов может меняться.

Например, NAND-микросхема может иметь размер стираемого блока в сотни кбайт, размер страницы записи и чтения 4 кбайт. Для NOR-микросхем размер стираемого блока варьируется от единиц до сотен кбайт, размер сектора записи — до сотен байт, страницы чтения — единицы-десятки байт.

Скорость чтения и записи

Скорость стирания варьируется от единиц до сотен миллисекунд в зависимости от размера стираемого блока. Скорость записи — десятки-сотни микросекунд.

Обычно скорость чтения для NOR-микросхем нормируется в десятки наносекунд. Для NAND-микросхем скорость чтения десятки микросекунд.

Особенности применения

Стремление достичь предельных значений емкости для NAND-устройств привело к «стандартизации брака» — праву выпускать и продавать микросхемы с некоторым процентом бракованных ячеек и без гарантии непоявления новых «bad-блоков» в процессе эксплуатации. Чтобы минимизировать потери данных, каждая страница памяти снабжается небольшим дополнительным блоком, в котором записывается контрольная сумма, информация для восстановления при одиночных битовых ошибках, информация о сбойных элементах на этой странице и количестве записей на эту страницу.

Сложность алгоритмов чтения и допустимость наличия некоторого количества бракованных ячеек вынудило разработчиков оснастить NAND-микросхемы памяти специфическим командным интерфейсом. Это означает, что нужно сначала подать специальную команду переноса указанной страницы памяти в специальный буфер внутри микросхемы, дождаться окончания этой операции, считать буфер, проверить целостность данных и, при необходимости, попытаться восстановить их.

Слабое место флеш-памяти — количество циклов перезаписи в одной странице. Ситуация ухудшается также в связи с тем, что стандартные файловые системы — то есть стандартные системы управления файлами для широко распространенных файловых систем — часто записывают данные в одно и то же место. Часто обновляется корневой каталог файловой системы, так что первые секторы памяти израсходуют свой запас значительно раньше. Распределение нагрузки позволит существенно продлить срок работы памяти. Подробнее про задачу равномерного распределения износа[14] см.: Wear leveling (англ.).

Подробнее о проблемах управления NAND-памятью, вызванных разным размером страниц стирания и записи см.: Write amplification (англ.).

NAND-контроллеры

Для упрощения применения микросхем флеш-памяти NAND-типа они используются совместно со специальными микросхемами — NAND-контроллерами. Эти контроллеры должны выполнять всю черновую работу по обслуживанию NAND-памяти: преобразование интерфейсов и протоколов, виртуализация адресации (с целью обхода сбойных ячеек), проверка и восстановление данных при чтении, забота о разном размере блоков стирания и записи, забота о периодическом обновлении записанных блоков (есть и такое требование), равномерное распределение нагрузки на секторы при записи.

Однако задача равномерного распределения износа не обязательна, что зачастую приводит к экономии в дешевых изделиях. Такие флеш-карты памяти и USB-брелоки быстро выйдут из строя при частой перезаписи. Если вам нужно часто записывать на флешку — старайтесь брать дорогие изделия с SLC-памятью и качественными контроллерами, а также старайтесь минимизировать запись в корневую директорию.

На дорогие NAND-контроллеры также может возлагаться задача «ускорения» микросхем флеш-памяти путем распределения данных одного файла по нескольким микросхемам. Время записи и чтения файла при этом сильно уменьшается.

Специальные файловые системы

Зачастую флеш-память подключается в устройстве напрямую — без контроллера. В этом случае задачи контроллера должен выполнять программный NAND-драйвер в операционной системе. Чтобы не выполнять избыточную работу по равномерному распределению записи по страницам, стараются эксплуатировать такие носители со специальными файловыми системами: JFFS2[15] и YAFFS[16] для Linux и др.

Применение

Существует два основных способа применения флеш-памяти: как мобильный носитель информации и как хранилище программного обеспечения («прошивки») цифровых устройств. Зачастую эти два применения совмещаются в одном устройстве.

Флеш-память позволяет обновлять прошивку устройств в процессе эксплуатации.

NOR

Применение NOR-флеши, устройства энергонезависимой памяти относительно небольшого объёма, требующие быстрого доступа по случайным адресам и с гарантией отсутствия сбойных элементов:

  • Встраиваемая память программ однокристальных микроконтроллеров. Типовые объёмы — от 1 кбайта до 1 Мбайта.
  • Стандартные микросхемы ПЗУ произвольного доступа для работы вместе с микропроцессором.
  • Специализированные микросхемы начальной загрузки компьютеров (POST и BIOS), процессоров ЦОС и программируемой логики. Типовые объёмы — единицы и десятки мегабайт.
  • Микросхемы хранения среднего размера данных, например DataFlash. Обычно снабжаются интерфейсом SPI и упаковываются в миниатюрные корпуса. Типовые объёмы — от сотен кбайт до технологического максимума.

NAND

Флеш-карты разных типов (спичка для сравнения масштабов)

Там, где требуются рекордные объёмы памяти — NAND-флеш вне конкуренции.

В первую очередь — это всевозможные мобильные носители данных и устройства, требующие для работы больших объёмов хранения. В основном, это USB-брелоки и карты памяти всех типов, а также мобильные медиаплееры.

Флеш-память типа NAND позволила миниатюризировать и удешевить вычислительные платформы на базе стандартных операционных систем с развитым программным обеспечением. Их стали встраивать во множество бытовых приборов: сотовые телефоны и телевизоры, сетевые маршрутизаторы и точки доступа, медиаплееры и игровые приставки, фоторамки и навигаторы.

Высокая скорость чтения делает NAND-память привлекательной для кэширования винчестеров. При этом часто используемые данные операционная система хранит на относительно небольшом твердотельном устройстве, а данные общего назначения записывает на дисковый накопитель большого объёма.[17]

Благодаря большой скорости, объёму и компактным размерам, NAND-память активно вытесняет из обращения носители других типов. Сначала исчезли дискеты и дисководы гибких магнитных дисков[18], ушли в небытие накопители на магнитной ленте. Магнитные носители практически полностью вытеснены из мобильных и медиаприменений.

Стандартизацией применения чипов флеш-памяти типа NAND занимается Open NAND Flash Interface Working Group (ONFI). Текущим стандартом считается спецификация ONFI версии 1.0[19], выпущенная 28 декабря 2006 года. Группа ONFI поддерживается конкурентами Samsung и Toshiba в производстве NAND-чипов: Intel, Hynix и Micron Technology.[20]

Достижения

USB-накопитель на флеш-памяти

Максимальное значение объёмов микросхем NOR — до 256 Мбайт. На 2012 год NAND имел максимальное значение объёма на 8-кристальную микросхему 128 Гбайт (то есть объём кристалла 16 Гбайт)[21].

В 2005 году Toshiba и SanDisk представили NAND-чипы объёмом 1 Гб[22], выполненные по технологии многоуровневых ячеек, где один транзистор может хранить несколько бит, используя разный уровень электрического заряда на плавающем затворе.

Компания Samsung в сентябре 2006 года представила 4-гигабайтный чип, выполненный по 40-нм технологическому процессу.[23]

В конце 2007 года Samsung сообщила о создании MLC-чипа флеш-памяти типа NAND, выполненного по 30-нм технологическому процессу с ёмкостью чипа 8 Гб. В декабре 2009 года начато производство этой памяти объёмом 4 Гб (32 Гбит).[24]

На конец 2008 года лидерами по производству флеш-памяти являлись Samsung (31 % рынка) и Toshiba (19 % рынка, включая совместные заводы с Sandisk). (Данные согласно iSuppli на 4 квартал 2008 года).

В июне 2010 года Toshiba объявила о выпуске 128-Гб чипа, состоящего из 16 модулей по 8 Гб. Одновременно с ним в массовую продажу вышли и чипы в 64 Гб.[25][26]

Для увеличения объёма в устройствах часто применяется массив из нескольких чипов. К 2007 году USB-устройства и карты памяти имели объём от 512 Мб до 64 Гб. Самый большой объём USB-устройств составлял 4 терабайта.

В 2010 году Intel и Micron сообщили об успешном совместном освоении выпуска 3-битной (TLC) флеш-памяти типа NAND с использованием норм 25-нм техпроцесса.[5]

6 декабря 2011 года Intel и Micron анонсировали NAND-флеш-память по технологии 20 нм объёмом 128 Гбит.[27]

27 августа 2011 года Transcend совместно с институтом ITRI представили на выставке линейку USB-накопителей с флеш-памятью ёмкостью от 16 ГБ до 2 ТБ и подключением по стандарту USB 3.0,[28][29], однако был продемонстрирован только образец объёмом 16 ГБ, и дополнительной информации не публиковалось[30].

На CES 2013 Kingston показала «флэшку» DataTraveler HyperX Predator объемом 1 терабайт с поддержкой стандарта USB 3.0. Показатели скорости чтения/записи у нее составляют 240 и 160 мегабайт в секунду соответственно.

См. также

Примечания

  1. Simona Boboila, Peter Desnoyers Write Endurance in Flash Drives: Measurements and Analysis (англ.) // FAST. — San Jose, California: Northeastern University, 2010.
  2. Hasso Plattner, Alexander. Zeier In-Memory Data Management: Technology and Applications. — SpringerLink : Bücher. — Springer, 2012. — С. 45. — 267 с. — ISBN 3642295754.
  3. Технология флеш-памяти
  4. 1 2 Kristian Vättö,Understanding TLC NAND // Anandtech, February 23, 2012
  5. 1 2 3 iXBT.com :: Все новости :: Intel и Micron освоили выпуск 3-битной флэш-памяти типа NAND по нормам 25 нм
  6. Samsung Mass Producing 128Gb 3-bit MLC NAND Flash Kevin Parrish // Tom’s Hardware, 11 April 2013
  7. A 7.8MB/s 64Gb 4-Bit/Cell NAND Flash Memory on 43nm CMOS Technology // Sandisk, NVMW — UCSD, 11-13 April 2010: «4-Bit/Cell (16LC)»
  8. http://www.nuvoton.com/NuvotonMOSS/Community/ProductInfo.aspx?tp_GUID=d2589477-840d-4046-9c3a-2e0e457048b3 ISD ChipCorder
  9. «Многокристальный модуль флеш-памяти NAND со стеком из 16-ти кристаллов NAND (NAND flash MCP (multi-chip package) with a 16-die NAND stack)»  (англ.)
  10. Flash Memory Survives 100 Million Cycles — IEEE Spectrum
  11. Design and Use Considerations for NAND Flash memory
  12. 1 2 Flash Memory Technology Direction, Jim Cooke, 2007 Reducing Read Disturb "““Rule of thumb for excessive reads per block between ERASE operations: SLC – 1,000,000 READ cycles; MLC – 100,000 READ cycles"
  13. Solid State Drive (SSD) FAQ // Dell: «6. I have unplugged my SSD drive and put it into storage. How long can I expect the drive to retain my data without needing to plug the drive back in? … In MLC and SLC, this can be as low as 3 months and best case can be more than 10 years»
  14. Flash Wear-Leveling
  15. ELJonline:Flash Filesystems for Embedded Linux Systems — Linux For Devices Articles — Linux for Devices. Архивировано из первоисточника 5 декабря 2012.
  16. Introducing YAFFS, the first NAND-specific flash file system — News — Linux for Devices. Архивировано из первоисточника 12 сентября 2012.
  17. ReadyBoost — Using Your USB Key to Speed Up Windows Vista — Tom Archer’s Blog — Site Home — MSDN Blogs
  18. BBC NEWS | UK | R.I.P. Floppy Disk
  19. http://www.onfi.org/docs/ONFI_1_0_Gold.pdf
  20. http://www.onfi.org/onfimembers.html
  21. «Из восьми /кристаллов/ можно сформировать чип флеш-памяти на 128 Гб (Eight can be combined to produce … 128GB flash memory chip)»  (англ.)
  22. Toshiba : Press Releases 8 February, 2005
  23. Samsung unveils 32Gb flash made from 40nm technology | Hardware — InfoWorld
  24. Денис Борн. Intel и Micron на пути к лидерству в области NAND-технологий 3DNews, 26 декабря 2009  (Проверено 15 марта 2010)
  25. Embedded Memory Solutions Memory Products — Toshiba America Electronic Components, Inc
  26. Toshiba creates 128GB flash chips for MP3 players, phones | Electronista
  27. Intel, Micron Extend NAND Flash Technology Leadership with Introduction of World’s First 128Gb NAND Device and Mass Production of 64Gb 20nm NAND
  28. http://www.netbooknews.com/33811/2tb-usb-the-size-of-your-finger-nail/ Перевод, сайт Гаджет.ру  (Проверено 31 августа 2011)
  29. This USB 3.0 Flash Drive Has 2 TB of Storage // Tom’s hardware, August 29, 2011
  30. Is Transcend planning a 2TB USB thumb drive? No word as to when it’ll be available // ComputerWorld, August 31, 2011

Ссылки