Флуоресцентная гибридизация in situ

Материал из Википедии — свободной энциклопедии
Перейти к: навигация, поиск
Метафазная пластинка с филадельфийской хромосомой. Хромосомы окрашены в синий цвет, локус ABL1 - красный цвет, локус BCR - зелёный цвет. Вверху слева - хромосома с перестройкой, отмечена красно-зеленой точкой.

Флуоресце́нтная гибридиза́ция in situ, или метод FISH (англ. Fluorescence in situ hybridization - FISH) — цитогенетический метод, который применяют для детекции и определения положения специфической последовательности ДНК на метафазных хромосомах или в интерфазных ядрах in situ. Кроме того, FISH используют для выявления специфических мРНК в образце ткани. В последнем случае метод FISH позволяет установить пространственно-временные особенности экспрессии генов в клетках и тканях.

Метод FISH используют в преимплантационной, пренатальной и постнатальной генетической диагностике[1], в диагностике онкологических заболеваний[2], в ретроспективной биологической дозиметрии[3].

Зонды[править | править вики-текст]

Кариотипирование при помощи многоцветного FISH

При флуоресцентной гибридизации in situ используют ДНК-зонды (ДНК-пробы), которые связываются с комплементарными мишенями в образце. В состав ДНК-зондов входят нуклеозиды, меченные флюорофорами (прямое мечение) или такими конъюгатами, как биотин или дигоксигенин (непрямое мечение). При прямом мечении связавшийся с мишенью ДНК-зонд можно наблюдать при помощи флуоресцентного микроскопа сразу по завершении гибридизации. В случае непрямого мечения необходима дополнительная процедура окрашивания, в ходе которой биотин выявляют при помощи флуоресцентно-меченного авидина или стептавидина, а дигоксигенин — при помощи флюоресцентно-меченых антител. Хотя непрямой вариант мечения ДНК-проб требует дополнительных реактивов и временных затрат, этот способ позволяет добиться обычно более высокого уровня сигнала за счёт присутствия на молекуле антитела или авидина 3—4 молекул флюорохрома. Кроме того, в случае непрямого мечения возможно каскадное усиление сигнала.[4]

Для создания ДНК проб используют клонированные последовательности ДНК, геномную ДНК, продукты ПЦР-реакции, меченые олигонуклеотиды, а также ДНК, полученную при помощи микродиссекции.[4]

Мечение зонда может осуществляться разными способами, например, путем ник-трансляции или при помощи ПЦР с мечеными нуклеотидами.

Процедура гибридизации[править | править вики-текст]

Схема эксперимента по флуоресцентной гибридизации in situ для локализации положения гена в ядре

На первом этапе происходит конструирование зондов. Размер зонда должен быть достаточно большим для того, чтобы гибридизация происходила по специфическому сайту, но и не слишком большой (не более 1 тыс п.о), чтобы не препятствовать процессу гибридизации. При выявлении специфических локусов или при окраске целых хромосом надо заблокировать гибридизацию ДНК-проб с неуникальными повторяющимися ДНК-последовательностями путём добавления в гибридизационную смесь немеченой ДНК повторов (например, Cot-1 DNA). Если ДНК-зонд представляет собой двуцепочечную ДНК, то перед гибридизацией её необходимо денатурировать.

На следующем этапе приготавливают препараты интерфазных ядер или метафазных хромосом. Клетки фиксируют на субстрате, как правило, на предметном стекле, затем проводят денатурацию ДНК. Для сохранения морфологии хромосом или ядер денатурацию проводят в присутствии формамида, что позволяет снизить температуру денатурации до 70°.

Далее к препарату добавляют зонды и осуществляют гибридизацию около 12 часов. Затем проводят несколько стадий отмывок для удаления всех негибридизовавшихся зондов.

Визуализацию связавшихся ДНК-зондов проводят при помощи флуоресцентного микроскопа. Интенсивность флуоресцентного сигнала зависит от многих факторов — эффективности мечения зондом, типа зонда и типа флуоресцентного красителя.

Примечания[править | править вики-текст]

  1. Шилова Н.В., Золотухина Т.В. Интерфазная флуоресцентная гибридизация in situ в диагностике числовых хромосомных аберраций// Медицинская генетика - 2007 . - Т.6, В.10. - С.53-58
  2. Bridge JA, Cushman-Vokoun AM (May 2011). «Molecular diagnostics of soft tissue tumors». Arch. Pathol. Lab. Med. 135 (5): 588–601. DOI:10.1043/2010-0594-RAIR.1. PMID 21526957.
  3. Ainsbury EA, Bakhanova E, Barquinero JF, et al. (November 2011). «Review of retrospective dosimetry techniques for external ionising radiation exposures». Radiat Prot Dosimetry 147 (4): 573–92. DOI:10.1093/rpd/ncq499. PMID 21183550.
  4. 1 2 Рубцов Н.Б. Методы работы с хромосомами млекопитающих: Учеб. пособие. — Новосибирск: Новосиб. гос. ун-т., 2006. — 152 с. — ISBN 5-94356-376-8

Литература[править | править вики-текст]

  • Рубцов Н.Б. Методы работы с хромосомами млекопитающих: Учеб. пособие. — Новосибирск: Новосиб. гос. ун-т., 2006. — 152 с. — ISBN 5-94356-376-8
  • Рубцов Н.Б. Гибридизация нуклеиновых кислот in situ в анализе хромосомных аномалий. Глава в книге // Введение в молекулярную диагностику / Под ред. М.А. Пальцева, Д.В. Залетаева. — М.: Медицина, 2011. — Т. 2 (Молекулярно-генетические методы в диагностике наследственных и онкологических заболеваний). — С. 100-136. — 1000 экз. — ISBN 978-5-225-03557-0