Формула Таппера

Материал из Википедии — свободной энциклопедии
Перейти к: навигация, поиск

Формула Таппера (англ. Tupper's self-referential formula) — самореферентная (при определённых условиях) формула, открытая Джеффом Таппером (англ. Jeff Tupper). Будучи отображённой на плоскости, создаёт собственное изображение.

Впервые формула была опубликована в 2001 году в докладе Джеффа Таппера для SIGGRAPH, посвящённом разработанной им программе рисования графиков GrafEq.

Формула является неравенством, определённым следующим образом:

{1\over 2} < \left\lfloor \mathrm{mod}\left(\left\lfloor {y \over 17} \right\rfloor 2^{-17 \lfloor x \rfloor - \mathrm{mod}(\lfloor y\rfloor, 17)},2\right)\right\rfloor

где \lfloor \cdot \rfloor обозначает целую часть, а mod — оператор модуля.

Пусть k равно

960939379918958884971672962127852754715004339660129306651505519271702802395266424689642842174350
718121267153782770623355993237280874144307891325963941337723487857735749823926629715517173716995
165232890538221612403238855866184013235585136048828693337902491454229288667081096184496091705183
454067827731551705405381627380967602565625016981482083418783163849115590225610003652351370343874
461848378737238198224849863465033159410054974700593138339226497249461751545728366702369745461014
655997933798537483143786841806593422227898388722980000748404719

Если отобразить график функции для точек (x, y) в диапазоне 0 \le x \le 106 и k \le y \le k + 17, то получится:

Tupper's self referential formula plot.png

Сама формула имеет общее применение для декодирования растровых изображений, закодированных в константе k. Формулу можно использовать для воспроизведения произвольных изображений, при этом она не будет содержать никаких ссылок на себя.

Константа k — простой монохромный растр, используемый в формуле как двоичное число, умноженное на 17. Если k разделить на 17, то младший бит будет соответствовать верхнему правому углу; остальные 17 младших бит будут соответствовать правой колонке пикселей; следующие 17 младших бит будут соответствовать второй колонке справа и т. д.

Литература[править | править вики-текст]

Ссылки[править | править вики-текст]