Хромосома

Материал из Википедии — свободной энциклопедии
Перейти к: навигация, поиск
Митотические хромосомы человека, окраска DAPI
Хромосомы саранчи в мейозе
Разные стадии деления клеток эпителия саламандры. Рисунок из книги В. Флемминга Zellsubstanz, Kern und Zelltheilung (1882)
Схема строения хромосомы в метафазе митоза. 1 — хроматида; 2 — центромера; 3 — короткое плечо; 4 — длинное плечо.

Хромосо́мы (др.-греч. χρῶμα — цвет и σῶμα — тело) — нуклеопротеидные структуры в ядре эукариотической клетки, в которых сосредоточена бо́льшая часть наследственной информации и которые предназначены для её хранения, реализации и передачи. Хромосомы чётко различимы в световом микроскопе только в период митотического или мейотического деления клетки. Набор всех хромосом клетки, называемый кариотипом, является видоспецифичным признаком, для которого характерен относительно низкий уровень индивидуальной изменчивости[1].

Хромосома образуется из единственной и чрезвычайно длинной молекулы ДНК, которая содержит линейную группу множества генов. Необходимыми функциональными элементами хромосомы эукариот являются центромера, теломеры и точки начала инициации репликации. Точки начала репликации (сайты инициации) и теломеры, находящиеся на концах хромосом, позволяют молекуле ДНК эффективно реплицироваться, тогда как в центромерах сестринские молекулы ДНК прикрепляются к митотическому веретену деления, что обеспечивает их точное расхождение по дочерним клеткам в митозе[2].

Исходно термин был предложен для обозначения структур, выявляемых в эукариотических клетках, но в последние десятилетия всё чаще говорят о бактериальных или вирусных хромосомах. Поэтому, по мнению Д. Е. Корякова и И. Ф. Жимулёва[3], более широким определением является определение хромосомы как структуры, которая содержит нуклеиновую кислоту и функция которой состоит в хранении, реализации и передаче наследственной информации. Хромосомы эукариот — это ДНК-содержащие структуры в ядре, митохондриях и пластидах. Хромосомы прокариот — это ДНК-содержащие структуры в клетке без ядра. Хромосомы вирусов — это молекула ДНК или РНК в составе капсида.

История открытия хромосом[править | править вики-текст]

В разных статьях и книгах приоритет открытия хромосом отдают разным людям, но чаще всего годом открытия хромосом называют 1882 год, а их первооткрывателем — немецкого анатома В. Флеминга. Однако справедливее было бы сказать, что он не открыл хромосомы, а в своей фундаментальной книге «Zellsubstanz, Kern und Zelltheilung» (нем.) собрал и упорядочил сведения о них, дополнив результатами собственных исследований. Термин «хромосома» был предложен немецким гистологом Г. Вальдейером в 1888 году, «хромосома» в буквальном переводе означает «окрашенное тело», поскольку оснóвные красители хорошо связываются хромосомами[4].

Сейчас сложно сказать, кто сделал первое описание и рисунок хромосом. В 1872 году швейцарский ботаник Карл фон Нэгили опубликовал работу, в которой изобразил некие тельца, возникающие на месте ядра во время деления клетки при образовании пыльцы у лилии (Lilium tigrinum) и традесканции (Tradescantia). Однако его рисунки не позволяют однозначно утверждать, что К. Нэгили видел именно хромосомы. В том же 1872 году ботаник Э. Руссов привёл свои изображения деления клеток при образовании спор у папоротника из рода ужовник (Ophioglossum) и пыльцы лилии (Lilium bulbiferum). На его иллюстрациях легко узнать отдельные хромосомы и стадии деления. Некоторые же исследователи полагают, что первыми увидел хромосомы немецкий ботаник В. Гофмайстер задолго до К. Нэгили и Э. Руссова, ещё в 1848—1849 годах. При этом ни К. Нэгили, ни Э. Руссов, ни тем более В. Гофмейстер не осознавали значения того, что видели[4].

После переоткрытия в 1900 году законов Менделя потребовалось всего один-два года для того, чтобы стало ясно, что хромосомы ведут себя именно так, как это ожидалось от «частиц наследственности». В 1902 году Т. Бовери и в 1902—1903 годах У. Сеттон (Walter Sutton) независимо друг от друга первыми выдвинули гипотезу о генетической роли хромосом. Т. Бовери обнаружил, что зародыш морского ежа Paracentrotus lividus может нормально развиваться только при наличии хотя бы одного, но полного набора хромосом. Также он установил, что разные хромосомы не идентичны по своему составу. У. Сеттон изучал гаметогенез у саранчового Brachystola magna и понял, что поведение хромосом в мейозе и при оплодотворении полностью объясняет закономерности расхождения менделевских факторов и образования их новых комбинаций[5].

Экспериментальное подтверждение этих идей и окончательное формулирование хромосомной теории было сделано в первой четверти XX века основателями классической генетики, работавшими в США с плодовой мушкой (D.melanogaster): Т. Морганом, К. Бриджесом, А. Стёртевантом (A.H.Sturtevant) и Г. Мёллером. На основе своих данных они сформулировали «хромосомную теорию наследственности», согласно которой передача наследственной информации связана с хромосомами, в которых линейно, в определенной последовательности, локализованы гены. Эти выводы были опубликованы в 1915 году в книге «The mechanisms of mendelian heredity» (англ.)[5].

В 1933 году за открытие роли хромосом в наследственности Т. Морган получил Нобелевскую премию по физиологии и медицине.

Морфология метафазных хромосом[править | править вики-текст]

В ходе клеточного цикла облик хромосомы меняется. В интерфазе это очень нежные структуры, занимающие в ядре отдельные хромосомные территории, но не заметные как обособленные образования при визуальном наблюдении. В митозе хромосомы преобразуются в плотно упакованные элементы, способные сопротивляться внешним воздействиям, сохранять свою целостность и форму[6][7]. Именно хромосомы на стадии профазы, метафазы или анафазы митоза доступны для наблюдения с помощью светового микроскопа. Митотические хромосомы можно увидеть у любого организма, клетки которого способны делиться митозом, исключение составляют дрожжи S.cerevisiae, чьи хромосомы слишком малы[8]. Обычно митотические хромосомы имеют размеры в несколько микрон. Например, самая большая хромосома человека хромосома 1 имеет длину около 7 — 8 мкм в метафазе и 10 мкм в профазе митоза[9].

Клетки HeLa в интерфазе и на последовательных стадиях митоза

Метафазные хромосомы состоят из двух продольных копий, которые называются сестринскими хроматидами и которые образуются при репликации. На стадии метафазы сестринские хроматиды соединены в районе первичной перетяжки, называемой центромерой. Центромера отвечает за расхождение сестринских хроматид в дочерние клетки при делении. На центромере происходит сборка кинетохора — сложной белковой структуры, определяющей прикрепление хромосомы к микротрубочкам веретена деления — движителям хромосомы в митозе[10]. Центромера делит хромосомы на две части, называемые плечами. У большинства видов короткое плечо хромосомы обозначают буквой p, длинное плечо — буквой q. Длина хромосомы и положение центромеры являются основными морфологическими признаками метафазных хромосом.

В зависимости от расположения центромеры различают три типа строения хромосом:

  • акроцентрические хромосомы, у которых центромера находится практически на конце, и второе плечо настолько мало, что его может быть не видно на цитологических препаратах;
  • субметацентрические хромосомы с плечами неравной длины;
  • метацентрические хромосомы, у которых центромера расположена посередине или почти посередине[11].

Эту классификацию хромосом на основе соотношения длин плеч предложил в 1912 году российский ботаник и цитолог С. Г. Навашин. Помимо вышеуказанных трёх типов С. Г. Навашин выделял ещё и телоцентрические хромосомы, то есть хромосомы только с одним плечом. Однако по современным представлениям истинно телоцентрических хромосом не бывает. Второе плечо, пусть даже очень короткое и невидимое в обычный микроскоп, всегда присутствует[12].

Дополнительным морфологическим признаком некоторых хромосом является так называемая вторичная перетяжка, которая внешне отличается от первичной отсутствием заметного угла между сегментами хромосомы. Вторичные перетяжки бывают короткими и длинными и могут располагаться в различных точках по длине хромосомы. Во вторичных перетяжках находятся, как правило, ядрышковые организаторы, содержащие многократные повторы генов, кодирующих рибосомные РНК. Небольшие хромосомные сегменты, отделяемые от основного тела хромосомы вторичными перетяжками, называются спутниками. Хромосомы, обладающие спутником, принято называть SAT-хромосомами (лат. SAT (Sine Acid Thymonucleinico) — без ДНК).

Дифференциальная окраска метафазных хромосом[править | править вики-текст]

Дифференциальная GTG-окраска хромосом человека

При монохромном окрашивании хромосом (ацето-кармином, ацето-орсеином, окрашиванием по Фёльгену или Романовскому-Гимзе) можно идентифицировать число и размеры хромосом; их форму, определяемую прежде всего положением центромер, наличием вторичных перетяжек, спутников. В подавляющем числе случаев для идентификации индивидуальных хромосом в хромосомном наборе этих признаков недостаточно. Кроме того, монохромно окрашенные хромосомы часто очень похожи у представителей разных видов. Разработка техники дифференциального окрашивания хромосом в начале 70-х годов XX века снабдила цитогенетиков мощнейшим инструментом для идентификации как индивидуальных хромосом в целом, так и их частей, облегчив тем самым процедуру анализа генома[13].

Методы дифференциального окрашивания делятся на две основные группы:

  • методы селективного окрашивания определённых хромосомных районов, таких как блоки конститутивного гетерохроматина, активные ядрышкобразующие районы, центромерные и теломерные районы;
  • методы дифференциального окрашивания эухроматиновых районов хромосом, обеспечивающие выявление в эухроматиновых районах чередующихся сегментов, так называемых бэндов (англ. band — полоса, лента, тесьма), которые окрашиваются с различной интенсивностью[14].

Уровни компактизации хромосомной ДНК[править | править вики-текст]

Основу хромосомы составляет линейная макромолекула ДНК значительной длины. Например, в молекулах ДНК хромосом человека насчитывается от 50 до 245 миллионов пар азотистых оснований. У эукариот существует высокоорганизованная система укладки молекул ДНК как в интерфазном ядре, так и в митотической хромосоме. Так, суммарная длина ДНК из одной клетки человека составляет величину порядка двух метров, в то время как типичное ядро человека, наблюдаемое только при помощи микроскопа, занимает объём около 110 мкм³, а митотическая хромосома человека в среднем не превышает 5 — 6 мкм. Надо отметить, что у эукариот в пролиферирующих клетках осуществляется постоянное закономерное изменение степени компактизации хромосом. Перед митозом хромосомная ДНК компактизуется в 105 раз по сравнению с линейной длиной ДНК, что необходимо для успешной сегрегации хромосом в дочерние клетки, в то время как в интерфазном ядре для успешного протекания процессов транскрипции и репликации хромосоме необходимо декомпактизоваться[9]. При этом ДНК в ядре никогда не бывает полностью вытянутой и всегда в той или иной степени упакована. Так, расчётное уменьшение размера между хромосомой в интерфазе и хромосомой в митозе составляет всего примерно 2 раза у дрожжей и 4 — 50 раз у человека[15].

Chromatin Structures ru.png

Упаковка ДНК в хроматин обеспечивает многократное сокращение линейных размеров ДНК, необходимое для размещения её в ядре. При этом надо оставить доступными определённые последовательности ДНК для регуляторных факторов и ферментов транскрипции. Эти задачи решаются на уровне упаковки ДНК в хроматин, которая происходит в несколько этапов. Наиболее изученными является три первых уровня упаковки: (1) накручивание ДНК на нуклеосомы с образованием нуклеосомной нити диаметром 10 нм, (2) компактизация нуклеосомной нити с образованием так называемой 30-нм фибриллы и (3) сворачивание последней в гигантские (50 — 200 тысяч п. н.) петли, закреплённые на белковой скелетной структуре ядра — ядерном матриксе[16].

Одним из самых последних уровней упаковки в митотическую хромосому некоторые исследователи считают уровень так называемой хромонемы, толщина которой составляет около 0,1 — 0,3 мкм[17]. В результате дальнейшей компактизации диаметр хроматиды достигает ко времени метафазы 700 нм. Значительная толщина хромосомы (диаметр 1400 нм) на стадии метафазы позволяет, наконец, увидеть её в световой микроскоп. Конденсированная хромосома имеет вид буквы X (часто с неравными плечами), поскольку две хроматиды, возникшие в результате репликации, соединены между собой в районе центромеры (подробнее о судьбе хромосом при клеточном делении см. статьи митоз и мейоз).

Хромосомные аномалии[править | править вики-текст]

Анеуплоидия[править | править вики-текст]

При анеуплоидии происходит изменение числа хромосом в кариотипе, при котором общее число хромосом не кратно гаплоидному хромосомному набору n. В случае утраты одной хромосомы из пары гомологичных хромосом мутантов называют моносомиками, в случае одной дополнительной хромосомы мутантов с тремя гомологичными хромосомами называют трисомиками, в случае утраты одной пары гомологов — нуллисомиками[18]. Анеуплоидия по аутосомным хромосомам всегда вызывает значительные нарушения развития, являясь основной причиной спонтанных абортов у человека[19]. Одной из самых известных анеуплоидий у человека является трисомия по хромосоме 21, которая приводит к развитию синдрома Дауна[1]. Анеуплоидия характерна для опухолевых клеток, особенно для клеток сóлидных опухолей[20].

Полиплоидия[править | править вики-текст]

Изменение числа хромосом, кратное гаплоидному набору хромосом (n), называется полиплоидией. Полиплоидия широко и неравномерно распространена в природе. Известны полиплоидные эукариотические микроорганизмы — грибы и водоросли, часто встречаются полиплоиды среди цветковых, но не среди голосемянных растений. Полиплоидия клеток всего организма у многоклеточных животных редка, хотя у них часто встречается эндополиплоидия некоторых дифференцированных тканей, например, печени у млекопитающих, а также тканей кишечника, слюнных желёз, мальпигиевых сосудов ряда насекомых[21].

Хромосомные перестройки[править | править вики-текст]

Хромосомные перестройки (хромосомные аберрации) — это мутации, нарушающие структуру хромосом. Они могут возникнуть в соматических и зародышевых клетках спонтанно или в результате внешних воздействий (ионизирующее излучение, химические мутагены, вирусная инфекция и др.). В результате хромосомной перестройки может быть утрачен или, наоборот, удвоен фрагмент хромосомы (делеция и дупликация, соответственно); участок хромосомы может быть перенесён на другую хромосому (транслокация) или он может изменить свою ориентацию в составе хромосомы на 180° (инверсия). Существуют и другие хромосомные перестройки.

Необычные типы хромосом[править | править вики-текст]

Микро- и макрохромосомы в метафазной пластинке курицы
B-хромосомы в метафазной пластинке сибирской косули Capreolus pygargus
Моноцентрическая (а) и голоцентрическая (b) хромосомы
Политенные хромосомы в клетке слюнной железы у представителя рода Chironimus из семейства комары-звонцы (Chironomidae)
Хромосома типа ламповых щеток из ядра ооцита тритона

Микрохромосомы[править | править вики-текст]

У многих птиц и рептилий хромосомы в кариотипе образуют две чёткие группы: макрохромосомы и микрохромосомы. У некоторых видов микрохромосомы настолько мелкие и их так много, что невозможно отличить одну от другой[22]. Микрохромосомы являются короткими по длине, но обогащёнными генами хромосомами. Например, кариотип курицы содержит 39 пар хромосом, 6 из которых относятся к макрохромосомам, а 33 — к минихромосомам. Макрохромосомы содержат две трети геномной ДНК, но только 25 % генов, в то время как микрохромосомы содержат оставшуюся треть геномной ДНК и 75 % генов. Таким образом, плотность генов в минихромосомах курицы в шесть раз выше, чем в макрохромосомах[23].

B-хромосомы[править | править вики-текст]

B-хромосомы — это добавочные хромосомы, которые имеются в кариотипе только у отдельных особей в популяции. Они часто встречаются у растений, описаны у грибов, насекомых и животных. Некоторые В-хромосомы содержат гены, часто это гены рРНК, однако не ясно, насколько эти гены функциональны. Наличие В-хромосом может влиять на биологические характеристики организмов, особенно у растений, где их наличие ассоциируется с пониженной жизнеспособностью. Предполагается, что В-хромосомы постепенно утрачиваются в соматических клетках в результате нерегулярности их наследования[23].

Голоцентрические хромосомы[править | править вики-текст]

Голоцентрические хромосомы не имеют первичной перетяжки, они имеют так называемый диффузный кинетохор, поэтому во время митоза микротрубочки веретена деления прикрепляются по всей длине хромосомы. Во время расхождения хроматид к полюсам деления у голоцентрических хромосом они идут к полюсам параллельно друг другу, в то время как у моноцентрической хромосомы кинетохор опережает остальные части хромосомы, что приводит к характерной V-образной форме расходящихся хроматид на стадии анафазы. При фрагментации хромосом, например, в результате воздействия ионизирующего излучения, фрагменты голоцентрических хромосом расходятся к полюсам упорядоченно, а не содержащие центромеры фрагменты моноцентрических хромосом распределяются между дочерними клетками случайным образом и могут быть утрачены[24].

Голоцентрические хромосомы встречаются у протист, растений и животных. Голоцентрическими хромосомами обладает нематода C. elegans[25].

Гигантские формы хромосом[править | править вики-текст]

Политенные хромосомы[править | править вики-текст]

Политенные хромосомы — это гигантские скопления объединённых хроматид, возникающие в некоторых типах специализированных клеток. Впервые описаны Е.Бальбиани (Edouard-Gerard Balbiani) в 1881-го в клетках слюнных желёз мотыля (Chironomus), однако их цитогенетическая роль была выявлена позднее в 30-х годах XX века Костовым, Т. Пэйнтером, Э. Хайцем и Г. Бауером (Hans Bauer). Политенные хромосомы обнаружены также в клетках слюнных желёз, кишечника, трахей, жирового тела и мальпигиевых сосудов личинок двукрылых.

Хромосомы типа ламповых щёток[править | править вики-текст]

Хромосомы типа ламповых щёток — это гигантская форма хромосом, которая возникает в мейотических женских клетках на стадии диплотены профазы I у некоторых животных, в частности, у некоторых земноводных и птиц[26]. Эти хромосомы являются крайне транскрипционно активными и наблюдаются в растущих ооцитах тогда, когда процессы синтеза РНК, приводящие к образованию желтка, наиболее интенсивны. В настоящее время известно 45 видов животных, в развивающихся ооцитах которых можно наблюдать такие хромосомы. Хромосомы типа ламповых щёток не образуются в ооцитах млекопитающих[27].

Впервые хромосомы типа ламповых щёток были описаны В. Флеммингом в 1882 году. Название «хромосомы типа ламповых щёток» было предложено немецким эмбриологом И. Рюккертом (J.Rϋckert) в 1892 году.

По длине хромосомы типа ламповых щёток превышают политенные хромосомы. Например, общая длина хромосомного набора в ооцитах некоторых хвостатых амфибий достигает 5900 мкм.

Бактериальные хромосомы[править | править вики-текст]

Прокариоты (археи и бактерии, в том числе митохондрии и пластиды, постоянно обитающие в клетках большинства эукариот) не имеют хромосом в собственном смысле этого слова. У большинства из них в клетке имеется только одна макромолекула ДНК, замкнутая в кольцо (эта структура получила название нуклеоид). У ряда бактерий обнаружены линейные (не замкнутые в кольцо) макромолекулы ДНК. Помимо нуклеоида или линейных макромолекул, ДНК может присутствовать в цитоплазме прокариотных клеток в виде небольших замкнутых в кольцо молекул ДНК, так называемых плазмид, содержащих обычно незначительное, по сравнению с бактериальной хромосомой, число генов. Состав плазмид может быть непостоянен, бактерии могут обмениваться плазмидами в ходе парасексуального процесса.

Имеются данные о наличии у бактерий белков, связанных с ДНК нуклеоида, но гистонов у них не обнаружено.

Хромосомы человека[править | править вики-текст]

В каждой ядросодержащей соматической клетке человека содержится 23 пары линейных хромосом, а также многочисленные копии митохондриальной ДНК. В нижеприведённой таблице показано число генов и оснований в хромосомах человека.

Хромосома Всего оснований[28] Количество генов[29] Количество белок-кодирующих генов[30]
1 249250621 3511 2076
2 243199373 2368 1329
3 198022430 1926 1077
4 191154276 1444 767
5 180915260 1633 896
6 171115067 2057 1051
7 159138663 1882 979
8 146364022 1315 702
9 141213431 1534 823
10 135534747 1391 774
11 135006516 2168 1914
12 133851895 1714 1068
13 115169878 720 331
14 107349540 1532 862
15 102531392 1249 615
16 90354753 1326 883
17 81195210 1773 1209
18 78077248 557 289
19 59128983 2066 1492
20 63025520 891 561
21 48129895 450 246
22 51304566 855 507
X-хромосома 155270560 1672 837
Y-хромосома 59373566 429 76
Всего 3 079 843 747 36463

21364

Примечания[править | править вики-текст]

  1. 1 2 Тарантул В. З. Толковый биотехнологический словарь. — М.: Языки славянских культур, 2009. — 936 с. — 400 экз. — ISBN 978-5-9551-0342-6
  2. Молекулярная биология клетки: в 3-х томах / Б. Альбертс, А. Джонсон, Д. Льюис и др. — М.-Ижевск: НИЦ «Регулярная и хаотическая динамика», Институт компьютерных исследований, 2013. — Т. I. — С. 309-336. — 808 с. — ISBN 978-5-4344-0112-8
  3. Коряков, Жимулев, 2009, с. 13
  4. 1 2 Коряков, Жимулев, 2009, с. 9
  5. 1 2 Коряков, Жимулев, 2009, с. 12
  6. Рубцов Н. Б. Хромосома человека в четырех измерениях // Природа. — 2007. — № 8. — С. 3-10.
  7. Рубцов Н. Б. Организация хромосом: 70 лет спустя // Природа. — 2012. — № 10. — С. 24-31.
  8. Коряков, Жимулев, 2009, с. 29
  9. 1 2 Смирнов А. Ф. Структурно-функциональная организация хромосом. — СПб: Нестор-История, 2009. — 204 с. — ISBN 978-5-98187-486-4
  10. Вершинин А. В. Центромеры и теломеры хромосом // Природа. — 2007. — № 9. — С. 21-27.
  11. Инге-Вечтомов, 2010, с. 84-87
  12. Коряков, Жимулев, 2009, с. 30
  13. Зощук Н. В., Бадаева Е Д., Зеленин А. В. История современного хромосомного анализа. Дифференциальное окрашивание хромосом растений // Онтогенез. — 2003. — Т. 34. — № 1. — С. 5-18. — PMID 12625068.
  14. Рубцов Н.Б. Методы работы с хромосомами млекопитающих: Учеб. пособие. — Новосибирск: Новосиб. гос. ун-т., 2006. — 152 с. — ISBN 5-94356-376-8
  15. Коряков, Жимулев, 2009, с. 91
  16. Разин С. В. Хроматин: упакованный геном / С. В. Разин, А. А. Быстрицкий. — М.: БИНОМ: Лаборатория знаний, 2009. — 176 с. — ISBN 978-5-9963-0087-7
  17. Ченцов Ю. С., Бураков В. В. Хромонема — забытый уровень укладки хроматина в митотических хромосомах // Биологические мембраны. — 2005. — Т. 22. — № 3. — С. 178-187. — ISSN 0233-4755.
  18. Коряков, Жимулёв, 2009, с. 45-46
  19. Hassold T, Hall H, Hunt P (October 2007). «The origin of human aneuploidy: where we have been, where we are going». Hum. Mol. Genet. 16 Spec No. 2: R203–8. DOI:10.1093/hmg/ddm243. PMID 17911163.
  20. Holland AJ, Cleveland DW (June 2012). «Losing balance: the origin and impact of aneuploidy in cancer». EMBO Rep. 13 (6): 501–14. DOI:10.1038/embor.2012.55. PMID 22565320.
  21. Инге-Вечтомов, 2010, с. 401-414
  22. Коряков, Жимулев, 2009, с. 31
  23. 1 2 Браун Т.А. Геномы /Пер. с англ. = Genomes. — М.-Ижевск: Институт компьютерных исследований, 2011. — 944 с. — ISBN 978-5-4344-0002-2
  24. Mandrioli M, Manicardi GC (August 2012). «Unlocking holocentric chromosomes: new perspectives from comparative and functional genomics?». Curr. Genomics 13 (5): 343–9. DOI:10.2174/138920212801619250. PMID 23372420.
  25. Dernburg AF (June 2001). «Here, there, and everywhere: kinetochore function on holocentric chromosomes». J. Cell Biol. 153 (6): F33–8. PMID 11402076.
  26. Gall JG (December 2012). «Are lampbrush chromosomes unique to meiotic cells?». Chromosome Res. 20 (8): 905–9. DOI:10.1007/s10577-012-9329-5. PMID 23263880.
  27. Macgregor H (December 2012). «So what's so special about these things called lampbrush chromosomes?». Chromosome Res. 20 (8): 903–4. DOI:10.1007/s10577-012-9330-z. PMID 23239398.
  28. Human Genome Assembly Information (англ.). Genome Reference Concortium. Проверено 18 апреля 2013.
  29. Homo sapiens Genome: Statistics -- Build 37.3. NCBI. Проверено 18 апреля 2013.
  30. Ensembl. Location: whole genome (англ.). The Ensembl project. Проверено 25 апреля 2013. Архивировано из первоисточника 28 апреля 2013.

Литература[править | править вики-текст]

  • Захаров А.Ф., Бенюш В.А., Кулешов Н.П., Барановская Л.И. Хромосомы человека. Атлас. — М.: Медицина, 1982. — 263 с.
  • Инге-Вечтомов С.Г. Генетика с основами селекции: учебник для студентов высших учебных заведений / С. Г. Инге-Вечтомов. — СПб.: Изд-во Н-Л, 2010. — С. 193-194. — 720 с. — ISBN 978-5-94869-105-3
  • Коряков Д.Е., Жимулев И.Ф. Хромосомы. Структура и функции. — Новосибирск: Из-во СО РАН, 2009. — 258 с. — ISBN 978-5-7692-1045-7
  • Лима-де-Фариа А. Похвала «глупости» хромосомы. — М.: БИНОМ. Лаборатория знаний, 2012. — 312 с. — ISBN 978-5-9963-0148-5
  • Молекулярная биология клетки: в 3-х томах / Б. Альбертс, А. Джонсон, Д. Льюис и др. — М.-Ижевск: НИЦ «Регулярная и хаотическая динамика», Институт компьютерных исследований, 2013. — Т. I. — С. 325-359. — 808 с. — ISBN 978-5-4344-0112-8

См. также[править | править вики-текст]