Циркадный ритм

Материал из Википедии — свободной энциклопедии
Перейти к: навигация, поиск

Циркадные (циркадианные) ритмы (от лат. circa — около, кругом и лат. dies — день) — циклические колебания интенсивности различных биологических процессов, связанные со сменой дня и ночи. Несмотря на связь с внешними стимулами, циркадные ритмы имеют эндогенное происхождение, представляя, таким образом, «внутренние часы» организма. Циркадные ритмы присутствуют у таких организмов как цианобактерии[1], грибы, растения, животные. Период циркадных ритмов обычно близок к 24 часам.

История открытия[править | править вики-текст]

Впервые об изменении положения листьев в течение дня у тамаринда (Tamarindus indicus) упоминает описывавший походы Александра Македонского Андростен.

В Новое время в 1729 году французский астроном де Мейрен сообщил о ежедневных движениях листьев у мимозы стыдливой (Mimosa pudica). Эти движения повторялись с определенной периодичностью даже если растения помещались в темноту, где отсутствовали такие внешние стимулы как свет, что позволило предположить эндогенное происхождение биологических ритмов, к которым были приурочены движения листьев растения. Де Мейрен предположил, что эти ритмы могут иметь что-то общее с чередованием сна и бодрствования у человека.

Декандоль в 1832 году определил, что период, с которыми растения мимозы совершают данные листовые движения, короче длины суток и составляет примерно 22-23 часа.

В 1880 году Чарльз Дарвин и его сын Фрэнсис сделали предположение о наследственной природе циркадных ритмов. Предположение о наследственной природе циркадных ритмов было подтверждено окончательно опытами, во время которых скрещивались растения фасоли, периоды циркадных ритмов которых различались. У гибридов длина периода отличалась от длины периода у обоих родителей. Эндогенная природа циркадных ритмов была окончательно подтверждена в 1984 году во время опытов с грибами вида Нейроспора густая (Neurospora crassa), проведенными в космосе. Эти опыты показали независимость околосуточных ритмов от геофизических сигналов, связанных с вращением Земли вокруг своей оси.

Циркадные ритмы растений[править | править вики-текст]

Циркадные ритмы растений связаны со сменой дня и ночи и важны для адаптации растений к суточным колебаниям таких параметров как температура, освещение, влажность. Растения существуют в постоянно меняющемся мире, поэтому циркадные ритмы важны для того, чтобы растение могло дать надлежащий ответ на абиотический стресс. Изменение положения листьев в течение суток — лишь один из многих ритмических процессов у растений. В течение суток колеблются такие параметры как активность ферментов, интенсивность газообмена и фотосинтетическая активность.

В способности растений распознавать чередование дня и ночи играет роль фитохромная система. Примером работы такой системы является ритм цветения у растения ‘’Pharbitis nil’’. Цветение у этого растения зависит от длины светового дня: если день короче определенного интервала, то растение цветет, если длиннее — вегетирует. В течение суток условия освещения меняются из-за того, что солнце находится под разными углами к горизонту, и соответственно меняется спектральный состав света, что воспринимается различными фитохромами которые возбуждаются светом с разной длиной волны. Так, вечером в спектре много дальних красных лучей, которые активизируют только фитохром А, давая растению сигнал о приближении ночи. Получив этот сигнал, растение принимает соответствующие меры. Важность фитохромов для температурной адаптации была выяснена во время опытов с трансгенными осинами ‘’Populus tremula’’, у которых продукция фитохрома А была повышена. Растениям постоянно «казалось», что они получают свет высокой интенсивности, и таким образом не могли адаптироваться к суточным колебаниям температуры и страдали от ночных заморозков.

При исследовании суточных ритмов у арабидопсис была также показана фотопериодичность работы трех генов CO, FKF1 и G1. Ген constans участвует в определении времени цветения. Синтез продукта гена CO запускается комплексом из белков FKF1 и G1. В этом комплексе продукт гена FKF1 играет роль фоторецептора. Синтез белка CO запускается через 4 часа после начала освещения и останавливается в темноте. Синтезированный белок за ночь разрушается и таким образом необходимая для цветения растения концентрация белка достигается только в условиях долгого летнего дня.

Циркадные ритмы у животных[править | править вики-текст]

Практически все животные приспосабливают свои физиологические и поведенческие процессы к суточным колебаниям абиотических параметров. Примером циркадного ритма у животных является цикл сон-бодрствование. У человека и у других животных существуют внутренние часы, которые идут даже в отсутствие внешних стимулов, которые могут дать информацию о времени суток. Исследование молекулярно-биологической природы этих часов началось около 30 лет назад. Конопка и Бензер, работавшие в калифорнийском технологическом институте, обнаружили три мутантных линии дрозофил, циркадные ритмы которых отличались от циркадных ритмов мушек дикого типа. Дальнейший анализ показал, что у мутантов изменения затрагивали аллели одного локуса, который был назван исследователями per (от period). В отсутствие нормальных сигналов окружающей среды период околосуточной активности у мушек дикого типа составлял 24 часа, у мутантов per-s 19 часов, у мутантов per-1 29 часов, у мутантов per-0 вообще не наблюдалось никакого ритма. Впоследствии было обнаружено, что продукты генов per есть во многих клетках дрозофил, участвующих в продукции циркадного ритма насекомого. Более того, у мушек дикого типа наблюдаются циркадные колебания в количестве per mРНК и белка Per, в то время как у мушек per0, у которых нет циркадного ритма такой цикличности, экспрессии не наблюдается.

Циркадные ритмы и цикл сон-бодрствование у человека[править | править вики-текст]

Периоды сна и бодрствования у человека сменяются с циркадной периодичностью. При исследовании связи периодичности сна и бодрствования с внешними стимулами изучалось изменение продолжительности периода данных колебаний у человека. В отсутствие внешней стимуляции, которая позволяет человеку судить о времени суток, подопытные всё равно ложились спать и пробуждались в обычное время; таким образом, период ритма сон-бодрствование не изменялся и оставался равным 24 часам, затем, через некоторое время, он увеличился до 36 часов. Когда подопытные возвратились в нормальные условия, то 24-часовой цикл был восстановлен.

Одним из наиболее эффективных внешних сигналов, поддерживающих 24-часовый цикл, является свет. У человека зрительные рецепторы посылают сигнал в супрахиазмальное ядро, и дальнейшее распространение сигнала приводит к выработке гормонов, регулирующих циркадную активность организма. Однако при этом отдельные органы, такие как сердце, печень, почки, имеют свои «внутренние часы» и могут «выбиваться из ритма», устанавливаемого супрахиазмальным ядром. Сигнал, поступающий в шишковидную железу, вызывает синтез и выделение в кровоток вызывающего сон нейрогормона мелатонина. У пожилых людей выделяется меньше мелатонина, что, вероятно, объясняет, почему старые люди чаще страдают бессонницей. Большая часть исследователей полагает, что супрахиазмальное ядро отвечает за циркадные ритмы и за колебания параметров, связанных с циклом сон-бодрствование, например температуры тела, кровяного давления и диуреза.

Заболевания, связанные с нарушением циркадного ритма[править | править вики-текст]

У взрослых во время сна уменьшается продукция мочи в связи с увеличением содержания антидиуретического гормона в крови. У некоторых детей и взрослых, у которых цикличность колебаний содержания вазопрессина нарушена, уменьшение продукции мочи в ночное время не происходит, что приводит к неконтролируемому мочеиспусканию. Такое заболевание как смертельная наследственная бессонница заканчивается летальным исходом и связана с врожденными дефектами нейронов супрахиазматического ядра. Любопытным является то, что подобные симптомы возникают при болезни Крейтцфельдта-Якоба, когда поражаются клетки того же супрахиазматического ядра.

С нарушениями циркадных ритмов тесно связаны нарушения сна: джетлаг, расстройство, связанное со сменным графиком работы, бессонница выходного дня и т. п.[2]

Примечания[править | править вики-текст]

Литература[править | править вики-текст]

  1. Purves D. et al (2004). ‘’Neuroscience’’. Sinauer Associates, Inc. Publishers Sunderland, Massachusetts U.S.A
  2. Алехина Н. Д. и др (2005) ‘’Физиология растений’’. М.: Издательский центр «Академия»
  3. McClung C. (2006). ‘’Plant Circadian rhythms’’

Ссылки[править | править вики-текст]