Цитохром c

Материал из Википедии — свободной энциклопедии
Перейти к: навигация, поиск
Цитохром c
Cytochrome C.png
Трёхмерная структура цитохрома c (зеленый) с молекулой гема (серый), координирующей центральный атом железа (оранжевый).
Доступные структуры: 1J3S, 3NWV, 3ZCF, 3ZOO
Идентификаторы
Символ CYCS; CYC; HCS; THC4
Другие Идентификаторы OMIM: 123970 MGI88578 HomoloGene133126
Профиль экспрессии РНК

PBB GE CYCS 208905 at tn.png

More reference expression data

Ортологи

Цитохром c (англ. cyt c) — небольшой гем-содержащий белок, относится к классу цитохромов, содержит в структуре гем типа c.

Цитохром c является белком с двойной функцией в клетке. С одной стороны, он является одноэлектронным переносчиком, свободно связанным с внутренней мембраной митохондрий, и необходимым компонентом дыхательной цепи. Он способен окисляться и восстанавливаться, но не связывает при этом кислород. С другой стороны, при определенных условиях он может отсоединяться от мембраны, плавать в межмембранном пространстве и активировать апоптоз. Всё это обеспечено уникальными свойствами молекулы цитохрома c.

Строение и свойства[править | править вики-текст]

Цитохром c — небольшой белок с молекулярной массой 12 кДа. В отличие от других цитохромов, является хорошо растворимым белком (растворимость около 100 г/л).

Цитохром c содержит в своей структуре гем типа c, который образует ковалентную связь через остатки цистеина (Cys-14 и Cys-17).

Биосинтез[править | править вики-текст]

У человека цитохром c кодируется ядерным геном CYCS[1][2].

Цитохром c синтезируется в виде неактивного предшественника — апоцитохрома. Его трансляция и котрансляционная модификация происходят в цитоплазме.

Для дальнейшего созревания апоцитохром и гем b (Fe-протопорфирин IX) должны транспортироваться в межмембранное пространство митохондрий.

Шапероны гема часто вовлечены в процесс доставки гема b в межмембранное пространство.[3]

Импорт апоцитохрома через внешнюю мембрану отличается от обычного белкового транспорта в митохондрии. В этот процесс вовлечен белок холоцитохром-c-синтаза (HCCS, другое название гем-лиаза), который одновременно присоединяет гем к апоцитохрому. При этом цитохром принимает более компактную струкутуру и становится активным. Важно, что перед ковалентным присоединением железо гема должно быть восстановлено, а цистеины апоцитохрома - окислены. Окисление цистеинов с формированием дисульфидной связи осуществляет фермент тиол-дисульфид-оксидоредуктаза.[3]

Биосинтез цитохрома отличается у разных организмов, и до сих пор нет общепринятой номенклатуры белков, принимающих участие в этом процессе.[3]

Функции[править | править вики-текст]

Основная функция цитохрома c — перенос электронов между комплексами III (кофермент Q — Cyt C редуктаза или Цитохром bc1 комплекс) и IV (Цитохром c-оксидаза) дыхательной цепи митохондрий. Кроме того, цитохром c вызывает апоптоз (запрограммированную клеточную гибель) при выходе из митохондрий в цитоплазму, служит для усиления сигнального пути апоптоза, а также имеет ряд неапоптотических функций.[4]

Дыхание[править | править вики-текст]

Дыхательная цепь митохондрий

Окислительное фосфорилирование — один из важнейших компонентов клеточного дыхания, который происходит на внутренней мембране митохондий при участии пяти комплексов дыхательной цепи. Он заключается в последовательном переносе электронов между комплексами с субстрата на молекулу кислорода, сопряженном закачивании протонов в межмембранное пространство и синтезе АТФ за счет полученного потенциала протонов. Для этого процесса необходимы переносчики электронов, который работают как челноки между дыхательными комплексами. Переносчики электронов могут быть жирорастворимыми, мембранными, или водорастворимыми, но связанными с мембраной. Цитохром c является водорастворимым, связанным с мембраной переносичиком электронов.

Цитохром c принимает один электрон от III комплекса. При этом он восстанавливает свою группу гема.

Далее восстановленный цитохром диффундирует по поверхности мембраны к IV комплексу. Этот комплекс является цитохром c-оксидазой, он принимает электрон у цитохрома и затем переносит накопленные электроны на молекулу O2 с образованием молекулы H2O.

Суммарно процесс выглядит следующим образом: III комплекс катализирует перенос 2 электронов с убихинона на 2 молекулы цитохрома, при этом выкачивая 2 протона из матрикса; IV комплекс катализирует перенос 4 электронов с 4 молекул цитохрома на O2, при этом выкачивая 4 протона из матрикса.

Апоптоз[править | править вики-текст]

Роль цитохрома c в апоптозе впервые была обнаружена в экспериментах, где добавление дезоксиаденозинтрифосфата к экстрактам цитозоля вызывало появление активности каспаз, причем без цитохрома активность не развивалась.[5] Позже была показана связь каспазной активности с митохондриями и роль цитохрома как главного посредника. Оказалось, что даже микроинъекции цитохрома в клетки млекопитающих вызывают апоптоз.[6]

Цитохром c принимает участие в развитии как внутреннего, так и внешнего апоптоза. Внутренний (intrinsic) апоптоз запускается повреждениями ДНК, метаболическим стрессом или присутствием неправильно свёрнутых белков. Ключевой этап в развитии внутреннего апоптоза — пермеабилизация внешней мембраны митохондрий. Внешний (extrinsic) апоптоз запускается при присоединении внеклеточного лиганда к мембранному рецептору клетки.

При активации апоптоза цитохром выходит из межмембранного пространства митохондрий в цитоплазму и связывается с фактором активации апоптотической протеазы (Apaf-1).[1] В итоге выход цитохрома c в цитоплазму инициирует формирование апоптосомы.

Другие функции[править | править вики-текст]

Цитохром c способен катализировать гидроксилирование и окисление ароматических углеводородов.

Показана роль цитохрома как антиоксиданта. Он способен катализировать окисление супероксид-радикалов в молекулярный кислород.[7]

Цитохром c катализирует амидирование жирных кислот. Это приводит к образованию важных физиологических регуляторов.[8]

При измененной, частично развернутой конформации цитохром c проявляет пероксидазную активность и увеличивает окисление кардиолипина.[9]

Представленность у разных видов[править | править вики-текст]

Цитохром c является консервативным белком, найденным у растений, животных и многих простейших. Это свойство, вместе с небольшим размером, делает цитохром c полезным для исследований в области кладистики.[10]

Первичная структура цитохрома c представлена одной цепью из примерно 100 аминокислотных остатков. У многих высокоорганизованных организмов в цепи ровно 104 остатка.[11] У млекопитающих первичная последовательность цитохрома c отличается лишь по нескольким остаткам. Например, последовательность цитохрома c человека идентична таковой шимпанзе, но отличается от лошади.[12]

Классификация[править | править вики-текст]

В свою очередь, среди цитохромов c выделяют четыре класса (класс 1, класс 2, класс 3, класс 4), представители которых отличаются друг от друга белковой частью, числом гемов, лигандами в пятом и шестом координационных положениях железа в геме и, следовательно, обладают сильно отличающимися свойствами[13].

Примечания[править | править вики-текст]

  1. 1 2 «Entrez Gene: cytochrome c»
  2. Tafani M., Karpinich N. O., Hurster K. A., Pastorino J. G., Schneider T., Russo M. A., Farber J. L. (March 2002). «Cytochrome c release upon Fas receptor activation depends on translocation of full-length bid and the induction of the mitochondrial permeability transition». J. Biol. Chem. 277 (12): 10073—10082. doi:10.1074/jbc.M111350200. PMID 11790791
  3. 1 2 3 Mavridou D. A., Ferguson S. J., Stevens J. M. (March 2013). «Cytochrome c assembly.». IUBMB Life. 65 (3): 209-216. DOI:10.1002/iub.1123. PMID 23341334.
  4. Ow Y. P., Green D. R., Hao Z., Mak T. W. (July 2008). «Cytochrome c: functions beyond respiration.». Nat Rev Mol Cell Biol 9 (7): 532—542. DOI:10.1038/nrm2434. PMID 18568041.
  5. Liu X., Kim C. N., Yang J., Jemmerson R., Wang X. (July 1996). «Induction of apoptotic program in cell-free extracts: requirement for dATP and cytochrome c.». Cell 86 (1): 147—157. DOI:10.1016/S0092-8674(00)80085-9. PMID 8689682.
  6. Zhivotovsky B., Orrenius S., Brustugun O. T., Døskeland S. O. (January 1998). «Injected cytochrome c induces apoptosis.». Nature 391 (6666): 449—450. DOI:10.1038/35058. PMID 9461210.
  7. Skulachev V. P. (February 1993). «Cytochrome c in the apoptotic and antioxidant cascades.» 423 (3): 275—280. PMID 9515723.
  8. Mueller G. P., Driscoll W. J. (August 2007). «In vitro synthesis of oleoylglycine by cytochrome c points to a novel pathway for the production of lipid signaling molecules.». J Biol Chem. 282 (31): 22364—22369. DOI:10.1074/jbc.M701801200. PMID 17537719.
  9. Kagan V. E., Bayir H. A., Belikova N. A., Kapralov O., Tyurina Y. Y., Tyurin V. A., Jiang J., Stoyanovsky D. A., Wipf P., Kochanek P. M., Greenberger J. S., Pitt B., Shvedova A. A., Borisenko G. (June 2009). «Cytochrome c/cardiolipin relations in mitochondria: a kiss of death». Free Radic Biol Med. 46 (11): 1439—1453. DOI:10.1016/j.freeradbiomed.2009.03.004. PMID 19285551.
  10. Margoliash E. (October 1963). «Primary structure and evolution of cytochrome c». Proc. Natl. Acad. Sci. U.S.A. 50: 672—679. DOI:10.1073/pnas.50.4.672. PMID 14077496.
  11. Amino acid sequences in cytochrome c proteins from different species, adapted from Strahler, Arthur; Science and Earth History, 1997. page 348.
  12. Lurquin P. F., Stone L., Cavalli-Sforza L. L. Genes, culture, and human evolution: a synthesis. — Oxford: Blackwell, 2007. — P. 79. — ISBN 1-4051-5089-0.
  13. Ambler R. P. (May 1991). «Sequence variability in bacterial cytochromes c». Biochim. Biophys. Acta 1058 (1): 42—47. DOI:10.1016/S0005-2728(05)80266-X. PMID 1646017.