Цунами

Материал из Википедии — свободной энциклопедии
Перейти к: навигация, поиск
Цунами; Мальдивские острова, Мале, 26 декабря 2004

Цуна́ми[1] (яп. 津波 IPA: [t͡sɯnä́mí][2], где  — «порт, залив»,  — «волна») — длинные волны, порождаемые мощным воздействием на всю толщу воды в океане или другом водоёме. Причиной большинства цунами являются подводные землетрясения, во время которых происходит резкое смещение (поднятие или опускание) участка морского дна. Цунами образуются при землетрясении любой силы, но большой силы достигают те, которые возникают из-за сильных землетрясений (с магнитудой более 7). В результате землетрясения распространяется несколько волн. Более 80% цунами возникают на периферии Тихого океана. Первое научное описание явления дал Хосе де Акоста в 1586 в Лиме, Перу, после мощного землетрясения, тогда цунами высотой 25 метров ворвалось на сушу на расстояние 10 км.

Теория[править | править вики-текст]

В открытом океане волны цунами распространяются со скоростью \sqrt{g\cdot H}, где g — ускорение свободного падения, а H — глубина океана (так называемое приближение мелкой воды, когда длина волны существенно больше глубины). При средней глубине 4 км скорость распространения получается 200 м/с или 720 км/ч. В открытом океане высота волны редко превышает один метр, а длина волны (расстояние между гребнями) достигает сотен километров, и поэтому волна не опасна для судоходства. При выходе волн на мелководье, вблизи береговой черты, их скорость и длина уменьшаются, а высота увеличивается. У берега высота цунами может достигать нескольких десятков метров. Наиболее высокие волны, до 30—40 метров, образуются у крутых берегов, в клинообразных бухтах и во всех местах, где может произойти фокусировка. Районы побережья с закрытыми бухтами являются менее опасными. Цунами обычно проявляется как серия волн, так как волны длинные, то между приходами волн может проходить более часа. Именно поэтому не стоит возвращаться на берег после ухода очередной волны, а стоит выждать несколько часов.

Высоту волны на прибрежном мелководье (Hмелк.), не имеющем защитных сооружений, можно посчитать по следующей эмпирической формуле:[3]

Hмелк. = 1,3 · Hглуб. · (Bглуб. / Bмелк.)1/4, м

где: Hглуб. — изначальная высота волны в глубоком месте;

Bглуб. — глубина воды в глубоком месте;
Bмелк. — глубина воды в прибрежной отмели;

Причины образования цунами[править | править вики-текст]

Землетрясения, извержения вулканов и другие подводные взрывы (в том числе взрывы подводных ядерных устройств), оползни, ледники, метеориты и другие разрушения выше или ниже уровня воды — всё это обладает достаточным потенциалом, чтобы вызвать цунами[4]. Первое предположение о том, что цунами связано с подводными землетрясениями, было высказано древнегреческим историком Фукидидом[5][6].

Наиболее распространённые причины[править | править вики-текст]

  • Подводное землетрясение (около 85 % всех цунами). При землетрясении под водой происходит взаимное смещение дна по вертикали: часть дна опускается, а часть приподнимается. Поверхность воды приходит в колебательное движение по вертикали, стремясь вернуться к исходному уровню, — среднему уровню моря, — и порождает серию волн. Далеко не каждое подводное землетрясение сопровождается цунами. Цунамигенным (то есть порождающим волну цунами) обычно является землетрясение с неглубоко расположенным очагом. Проблема распознавания цунамигенности землетрясения до сих пор не решена, и службы предупреждения ориентируются на магнитуду землетрясения. Наиболее сильные цунами генерируются в зонах субдукции. Также, необходимо чтобы подводный толчок вошёл в резонанс с волновыми колебаниями.
  • Оползни. Цунами такого типа возникают чаще, чем это оценивали в ХХ веке (около 7 % всех цунами). Зачастую землетрясение вызывает оползень и он же генерирует волну. 9 июля 1958 года в результате землетрясения на Аляске в бухте Литуйя возник оползень. Масса льда и земных пород обрушилась с высоты 1100 м. Образовалась волна, достигшая на противоположном берегу бухты высоты более 524 м.[7][8] Подобного рода случаи весьма редки и, конечно, не рассматриваются в качестве эталона. Но намного чаще происходят подводные оползни в дельтах рек, которые не менее опасны. Землетрясение может быть причиной оползня и, например, в Индонезии, где очень велико шельфовое осадконакопление, оползневые цунами особенно опасны, так как случаются регулярно, вызывая локальные волны высотой более 20 метров.
  • Вулканические извержения (около 5 % всех цунами). Крупные подводные извержения обладают таким же эффектом, что и землетрясения. При сильных вулканических взрывах образуются не только волны от взрыва, но вода также заполняет полости от извергнутого материала или даже кальдеру, в результате чего возникает длинная волна. Классический пример — цунами, образовавшееся после извержения Кракатау в 1883 году. Огромные цунами от вулкана Кракатау наблюдались в гаванях всего мира и уничтожили в общей сложности 5000 кораблей, погибло 36 000 человек.

Другие возможные причины[править | править вики-текст]

  • Человеческая деятельность. В наш век атомной энергии у человека в руках появилось средство вызывать сотрясения, раньше доступные лишь природе. В 1946 году США произвели в морской лагуне глубиной 60 м подводный атомный взрыв с тротиловым эквивалентом 20 тыс. тонн. Возникшая при этом волна на расстоянии 300 м от взрыва поднялась на высоту 28,6 м, а в 6,5 км от эпицентра ещё достигала 1,8 м. Но для дальнего распространения волны нужно вытеснить или поглотить некоторый объём воды, и цунами от подводных оползней и взрывов всегда несут локальный характер. Если одновременно произвести взрыв нескольких водородных бомб на дне океана, вдоль какой-либо линии, то не будет никаких теоретических препятствий к возникновению цунами, такие эксперименты проводились, но не привели к каким-либо существенным результатам по сравнению с более доступными видами вооружений. В настоящее время любые подводные испытания атомного оружия запрещены серией международных договоров.
  • Падение крупного небесного тела может вызвать огромное цунами, так как, имея огромную скорость падения (десятки километров в секунду), данные тела имеют колоссальную кинетическую энергию, а масса их может составлять миллиарды тонн и более. Эта энергия передаётся воде, следствием чего и будет волна.
  • Ветер может вызывать большие волны (до 21 м), но такие волны не являются цунами, так как они короткопериодные и не могут вызывать затопления на берегу. Однако возможно образование метео-цунами при резком изменении атмосферного давления или при быстром перемещении аномалии атмосферного давления. Такое явление наблюдается на Балеарских островах и называется риссага (en:Rissaga).

Признаки появления цунами[править | править вики-текст]

  • Внезапный быстрый отход воды от берега на значительное расстояние и осушка дна. Чем дальше отступило море, тем выше могут быть волны цунами. Люди, находящиеся на берегу и не знающие об опасности, могут остаться из любопытства или для сбора рыбы и ракушек. В данном случае необходимо как можно скорее покинуть берег и удалиться от него на максимальное расстояние — таким правилом следует руководствоваться, находясь, например, в Японии, на Индоокеанском побережье Индонезии, Камчатке. В случае телецунами волна обычно подходит без отступления воды.
  • Землетрясение. Эпицентр землетрясения находится, как правило, в океане. На берегу землетрясение обычно гораздо слабее, а часто его нет вообще. В цунамоопасных регионах есть правило, что если ощущается землетрясение, то лучше уйти дальше от берега и при этом забраться на холм, таким образом заранее подготовиться к приходу волны.
  • Необычный дрейф льда и других плавающих предметов, образование трещин в припае.
  • Громадные взбросы у кромок неподвижного льда и рифов, образование толчеи, течений.

Опасность цунами[править | править вики-текст]

Цунами

Может быть непонятным, почему цунами высотой несколько метров оказалось катастрофическим, в то время, как волны той же (и даже значительно большей) высоты, возникшие во время шторма, к жертвам и разрушениям не приводят. Можно назвать несколько факторов, которые приводят к катастрофическим последствиям:

  • Высота волны у берега в случае цунами, вообще говоря, не является определяющим фактором. В зависимости от конфигурации дна возле берега, явление цунами может пройти вовсе без волны, в обычном понимании, а как серия стремительных приливов и отливов, что также может привести к жертвам и разрушениям.
  • Во время шторма в движение приходит лишь поверхностный слой воды. Во время цунами — вся толща воды, от дна до поверхности. При этом на берег при цунами выплёскивается объём воды, в тысячи раз превышающий штормовые волны. Стоит также учесть тот факт, что длина гребня штормовых волн не превышает 100—200 метров, при этом у цунами длина гребня распространяется по всему побережью, а это не одна тысяча километров.
  • Скорость волн цунами, даже у берега, превышает скорость ветровых волн. Кинетическая энергия у волн цунами также в тысячи раз больше.
  • Цунами, как правило, порождает не одну, а несколько волн. Первая волна, не обязательно самая большая, смачивает поверхность, уменьшая сопротивление для последующих волн.
  • При шторме волнение нарастает постепенно, люди обычно успевают отойти на безопасное расстояние до прихода больших волн. Цунами приходит внезапно.
  • Разрушение от цунами может возрасти в гавани — там, где ветровые волны ослабляются, а следовательно, жилые постройки могут стоять у самого берега.
  • Отсутствие у населения элементарных знаний о возможной опасности. Так, во время цунами 2004 года, когда море отступило от берега, многие местные жители оставались на берегу — из любопытства или из желания собрать не успевшую уйти рыбу. Кроме того, после первой волны многие возвращались в свои дома — оценить ущерб или пытаться найти близких, не зная о последующих волнах.
  • Система оповещения о цунами есть не везде и срабатывает не всегда.
  • Разрушение береговой инфраструктуры усугубляет бедствие, добавляя катастрофические техногенные и социальные факторы. Затопление низменностей, долин рек приводит к засолению почв.

Системы предупреждения цунами[править | править вики-текст]

Системы предупреждения цунами строятся главным образом на обработке сейсмической информации. Если землетрясение имеет магнитуду более 7,0 (в прессе это называют баллами по шкале Рихтера, хотя это ошибка, так как магнитуду не измеряют в баллах. Измеряют в баллах балльность, характеризующую интенсивность сотрясения грунта во время землетрясения) и центр расположен под водой, то подаётся предупреждение о цунами. В зависимости от региона и заселённости берегов условия выработки сигнала тревоги могут быть различными.

Вторая возможность предупреждения о цунами это предупреждение «по факту» — способ более надёжный, так как практически отсутствуют ложные тревоги, но часто такое предупреждение может быть выработано слишком поздно. Предупреждение по факту полезно для телецунами — глобальных цунами, оказывающих влияние на весь океан и приходящих на другие границы океана спустя несколько часов. Так, индонезийское цунами в декабре 2004 года для Африки является телецунами. Классическим случаем являются Алеутские цунами — после сильного заплеска на Алеутах можно ожидать существенный заплеск на Гавайских островах. Для выявления волн цунами в открытом океане используются придонные датчики гидростатического давления. Система предупреждения, основанная на таких датчиках со спутниковой связью с приповерхностного буя, разработанная в США, называется DART (en:Deep-ocean Assessment and Reporting of Tsunamis). Обнаружив волну тем или иным образом, можно достаточно точно определить время её прибытия в различные населённые пункты.

Существенным моментом системы предупреждения является своевременное распространение информации среди населения. Очень важно, чтобы население представляло, какую угрозу несёт с собой цунами. В Японии имеется множество образовательных программ по природным катастрофам, а в Индонезии население в основном не знакомо с цунами, что и стало основной причиной большого количества жертв в 2004 году. Также важное значение имеет законодательная база по застройке прибрежной зоны.

Наиболее крупные цунами[править | править вики-текст]

XX век[править | править вики-текст]

Вызвано мощным землетрясением (оценка магнитуды по разным источникам колеблется от 8,3 до 9), которое произошло в Тихом океане в 130 километрах от побережья Камчатки. Три волны высотой до 15—18 метров (по разным источникам) уничтожили город Северо-Курильск и нанесли ущерб ряду прочих населённых пунктов. По официальным данным, погибло более двух тысяч человек.

Вызвано землетрясением с магнитудой 9,1, произошедшим на Андреяновских островах (Аляска), которое вызвало две волны, со средней высотой волн 15 и 8 метров соответственно. Кроме того в результате землетрясения проснулся вулкан Всевидова, расположенный на острове Умнак и не извергавшийся около 200 лет. В катастрофе погибло более 300 человек.

  • 9.07.1958 залив Литуйя, (юго-запад Аляски, США).

Землетрясение, произошедшее севернее залива (на разломе Фэруэтер), инициировало сильный оползень на склоне расположенном над бухтой Литуйя горы (около 300 миллионов кубических метров земли, камней и льда). Вся эта масса завалила северную часть бухты и вызвала огромную волну рекордной высоты около 150 метров[9], движущуюся со скоростью 160 км/ч. Максимальная высота, на которой были зафиксированы разрушения вызванные волной, составляла 524 метра над уровнем моря[9] (или 1720 фута)[10][11].

  • 28.03.1964 Аляска, (США).

Крупнейшее на Аляске землетрясение (магнитудой 9,2), произошедшее в проливе Принца Уильяма, вызвало цунами из нескольких волн, с наибольшей высотой — 67 метров. В результате катастрофы (в основном, из-за цунами) по разным оценкам погибло от 120 до 150 человек.

Землетрясение с магнитудой 7,1, произошедшее на северо-западном побережье острова Новая Гвинея, вызвало мощный подводный оползень, породивший цунами, в результате которого погибло более 2000 человек.

XXI век[править | править вики-текст]

Распространение цунами по Индийскому океану

В 110 км от побережья полуострова Кии и в 130 км от побережья префектуры Коти произошли два сильных землетрясения (магнитудой до 6,8 и 7,3 соответственно), вызвавших цунами, с высотой волн до одного метра. Пострадало несколько десятков человек.

В 00:58 произошло мощнейшее землетрясение — второе по мощности из всех зарегистрированных (магнитудой 9,3), вызвавшее самое смертоносное из всех известных цунами. От цунами пострадали страны Азии (Индонезия — 180 тыс. человек, Шри-Ланка — 31—39 тыс. человек, Таиланд — более 5 тыс. человек и др.) и африканская Сомали. Общее количество погибших превысило 235 тыс. человек.

Землетрясение магнитудой 6,8 вызвало цунами с высотой волны 30—50 см. Однако, благодаря своевременному предупреждению, население из опасных районов было эвакуировано.

Вызвано землетрясением магнитудой 8, произошедшим в южной части Тихого океана. Волны в несколько метров высотой достигли и Новой Гвинеи. Жертвами цунами стали 52 человека.

Сильнейшее землетрясение магнитудой 9,0 с эпицентром, находящимся в 373 км северо-восточнее Токио, вызвало цунами с высотой волны, превышавшей 40 метров. По полученным данным, гипоцентр землетрясения находился на глубине 32 км[12]. Очаг землетрясения находился к востоку от северной части острова Хонсю и простирался на расстояние около 500 км, что видно из карты афтершоков. Кроме того, землетрясение и последовавшее за ним цунами стали причиной аварии на АЭС Фукусима I. По состоянию на 2 июля 2011 года официальное число погибших в результате землетрясения и цунами в Японии составляет 15 524 человек, 7 130 человек числятся пропавшими без вести, 5 393 человек ранены.

Суперцунами[править | править вики-текст]

Некоторыми специалистами высказывается мнение, что главной причиной, вызывающей особенно сильные, так называемые суперцунами, — это падение на поверхность планеты небесных тел. По их мнению, прослеживается закономерность в резких климатических изменениях на границе плейстоцена и голоцена и падением крупных метеоритов на земную поверхность и в акваторию океанов[13]. В их исследованиях представлены геологические, археологические и исторические свидетельства трёх крупнейших климатических катастроф, возможно происходивших на Земле 12,900, 4300-4500 лет тому назад и в 536—540 гг. нашей эры[14]. Для изучения проблемы космогенных цунами была создана международная научная группа Holocene Impact Working Group.

См. также[править | править вики-текст]

Источники[править | править вики-текст]

Цунами в искусстве[править | править вики-текст]

Примечания[править | править вики-текст]

  1. Большой толковый словарь русского языка. - 1-е изд-е: СПб.: Норинт
  2. 「NHK日本語発音アクセント辞典」。2002年。ISBN 978-4-14-039360-4
  3. Действие атомного оружия. Пер. с англ. — М.: Изд-во иностр. лит., 1954. — С. 102. — 439 с.
  4. Barbara Ferreira. When icebergs capsize, tsunamis may ensue. Nature (April 17, 2011). Проверено 27 апреля 2011. Архивировано из первоисточника 23 июня 2012.
  5. Thucydides: «A History of the Peloponnesian War», 3.89.1-4
  6. Smid T. C. 'Tsunamis' in Greek Literature. — 2nd. — Vol. 17. — P. 100–104.
  7. Тегюль Мари. Цунами: Большая Волна, Заливающая Бухту.
  8. Biggest Tsunami, Lituya Bay Tsunami
  9. 1 2 BBC Two - Horizon - Episode guide
  10. Цунами на Аляске в 1957 и 1958 гг
  11. [МЕГА цунами от 9 июля 1958 года в Литуйя Бэй, Аляска http://www.drgeorgepc.com/Tsunami1958LituyaB.html]
  12. Magnitude 9.0 — NEAR THE EAST COAST OF HONSHU, JAPAN (недоступная ссылка с 21-05-2013 (468 дней) — историякопия)
  13. А. С. Алексеев, В. К. Гусяков. О ВОЗМОЖНОСТИ КОСМОГЕННЫХ ЦУНАМИ В МИРОВОМ ОКЕАНЕ
  14. Гусяков В. К. От Тунгуски до Чикскулуба. «Наука в Сибири» № 43 (2828), 27 октября 2011 г.

Ссылки[править | править вики-текст]