Число Вудала

Материал из Википедии — свободной энциклопедии
Перейти к: навигация, поиск

В теории чисел число Вудала (Wn) — любое натуральное число вида

Wn = n × 2n − 1

для некоторого натурального n. Несколько первых чисел Вудала:

1, 7, 23, 63, 159, 383, 895, … последовательность A003261 в OEIS.

Числа Вудала были впервые изучены Алланом Дж. Куннингамом (англ. Allan Joseph Champneys Cunningham) и Г. Дж. Вудалом (англ. H. J. Woodall) в 1917, воодушевленные более ранними исследованиями Джеймса Каллена подобным образом определенных чисел Каллена. Числа Вудала странным образом проявились в теореме Гудстейна.

Числа Вудала, являющиеся простыми числами, называются простыми числами Вудала. Несколько первых экспонент n, для которых соответствующие числа Вудала Wn простые:

2, 3, 6, 30, 75, 81, 115, 123, 249, 362, 384, … последовательность A002234 в OEIS.

Сами же простые числа Вудала образуют последовательность:

7, 23, 383, 32212254719, … последовательность A050918 в OEIS.

В 1976 году Христофер Хулей (англ. Christopher Hooley) показал, что почти все числа Каллена составные. Доказательство Кристофера Хулей было переработано математиком Хирми Суяма чтобы показать, что оно верно для любой последовательности чисел n • 2n+a + b где a и b целые числа, и частично также для чисел Вудала. Предполагают, что существует бесконечно много простых числе Вудала. К декабрю 2007 года наибольшее известное число Вудала — 3752948 × 23752948 − 1.[1] Оно имеет 1,129,757 цифр и было найдено Матью Томпсоном (Matthew J. Thompson) в 2007 в проекте распределенных вычислений PrimeGrid.

Подобно числам Каллена, числа Вудала имеют много свойств делимости. Например, если p простое число, то p делит

W(p + 1) / 2 если символ Якоби \left(\frac{2}{p}\right) равен +1 и
W(3p − 1) / 2 если символ Якоби \left(\frac{2}{p}\right) равен −1.

Обобщенное число Вудала определяется как число вида n × bn − 1, где n + 2 > b. Если простое число можно записать в таком виде, его называют обобщенным простым числом Вудала.

См. также[править | править исходный текст]

Примечания[править | править исходный текст]

Литература[править | править исходный текст]

Ссылки[править | править исходный текст]