Число Вудала

Материал из Википедии — свободной энциклопедии
Перейти к: навигация, поиск

В теории чисел число Вудала (Wn) — любое натуральное число вида

W_n = n \cdot 2^n - 1

для некоторого натурального n. Несколько первых чисел Вудала:

1, 7, 23, 63, 159, 383, 895, … последовательность A003261 в OEIS.

Числа Вудала были впервые изучены Алланом Дж. Каннингемом (англ.)русск. и Г. Дж. Вудалом (англ.)русск. в 1917, воодушевлённые более ранними исследованиями Джеймса Каллена подобным образом определённых чисел Каллена. Числа Вудала странным образом проявились в теореме Гудстейна.

Числа Вудала, являющиеся простыми числами, называются простыми числами Вудала. Несколько первых экспонент n, для которых соответствующие числа Вудала Wn простые:

2, 3, 6, 30, 75, 81, 115, 123, 249, 362, 384, … последовательность A002234 в OEIS.

Сами же простые числа Вудала образуют последовательность:

7, 23, 383, 32212254719, … последовательность A050918 в OEIS.

В 1976 году Христофер Хулей (англ. Christopher Hooley) показал, что почти все числа Каллена составные. Доказательство Кристофера Хулей было переработано математиком Хирми Суяма чтобы показать, что оно верно для любой последовательности чисел n \cdot 2^{n+a} + b, где a и b целые числа, и частично также для чисел Вудала. Предполагают, что существует бесконечно много простых чисел Вудала. К декабрю 2007 года наибольшее известное простое число Вудала — 3752948 * 2^{3752948} - 1.[1] Оно имеет 1 129 757 цифр и было найдено Матью Томпсоном (Matthew J. Thompson) в 2007 в проекте распределённых вычислений PrimeGrid.

Подобно числам Каллена, числа Вудала имеют много свойств делимости. Например, если p простое число, то p делит

W_{(p + 1)/2}, если символ Якоби \left(\frac{2}{p}\right) равен +1 и
W_{(3p-1)/2}, если символ Якоби \left(\frac{2}{p}\right) равен −1.

Обобщённое число Вудала определяется как число вида n \cdot b^{n} - 1, где n + 2 > b. Если простое число можно записать в таком виде, его называют обобщённым простым числом Вудала.

См. также[править | править вики-текст]

Примечания[править | править вики-текст]

Литература[править | править вики-текст]

Ссылки[править | править вики-текст]