Электрический импеданс

Материал из Википедии — свободной энциклопедии
Перейти к: навигация, поиск
 Просмотр этого шаблона  Классическая электродинамика
VFPt Solenoid correct2.svg
Электричество · Магнетизм
См. также: Портал:Физика

Электри́ческий импеда́нс (комплексное сопротивление, полное сопротивление) — комплексное сопротивление двухполюсника для гармонического сигнала. Это понятие ввёл физик и математик О. Хевисайд в 1886 году.[1][2]

Аналогия с сопротивлением[править | править вики-текст]

В отличие от резистора, электрическое сопротивление которого характеризует соотношение напряжения к току на нём, попытка применения термина электрическое сопротивление к реактивным элементам (катушка индуктивности и конденсатор) приводит к тому, что сопротивление идеальной катушки индуктивности стремится к нулю, а сопротивление идеального конденсатора — к бесконечности.

Сопротивление правильно описывает свойства катушки и конденсатора только на постоянном токе. В случае же переменного тока свойства реактивных элементов существенно иные: напряжение на катушке индуктивности и ток через конденсатор не равны нулю. Такое поведение сопротивлением уже не описывается, поскольку сопротивление предполагает постоянное, не зависящее от времени соотношение тока и напряжения, то есть отсутствие фазовых сдвигов тока и напряжения.

Было бы удобно иметь некоторую характеристику и для реактивных элементов, которая бы при любых условиях связывала ток и напряжение на них подобно сопротивлению. Такую характеристику можно ввести, если рассмотреть свойства реактивных элементов при гармонических воздействиях на них. В этом случае ток и напряжение оказываются связаны некоей стабильной константой (подобной в некотором смысле сопротивлению), которая и получила название электрический импеданс (или просто импеданс). При рассмотрении импеданса используется комплексное представление гармонических сигналов, поскольку именно оно позволяет одновременно учитывать и амплитудные, и фазовые характеристики сигналов и систем.

Определение[править | править вики-текст]

Импедансом \hat z(j \omega)\; называется отношение комплексной амплитуды напряжения гармонического сигнала, прикладываемого к двухполюснику, к комплексной амплитуде тока, протекающего через двухполюсник. При этом импеданс не должен зависеть от времени: если время t в выражении для импеданса не сокращается, значит, для данного двухполюсника понятие импеданса неприменимо.


     \hat z(j \omega)\;=
     \frac{\hat u(j \omega, t)\;}{\hat i(j \omega, t)\;} =
     \frac{U(\omega) e^{j(\omega t + \phi_u(\omega))}}{I(\omega) e^{j(\omega t + \phi_i(\omega))}} =
     \frac {U(\omega) e^{j\phi_u(\omega)}}{I(\omega) e^{j\phi_i(\omega)}} = 
     \frac{\hat U(j\omega)\;}{\hat I(j\omega)\;}
   (1)

Здесь

  • jмнимая единица;
  • \omega — циклическая (круговая) частота;
  • U(\omega), I(\omega) — амплитуды напряжения и тока гармонического сигнала на частоте \omega;
  • \phi_u(\omega), \phi_i(\omega) — фазы напряжения и тока гармонического сигнала на частоте \omega;
  • \hat U(j\omega)\;, \hat I(j\omega)\; — Комплексные амплитуды напряжения и тока гармонического сигнала на частоте \omega;

Исторически сложилось, что обозначение импеданса, комплексных амплитуд и других комплекснозначных функций частоты записывают как f (j\omega), а не f (\omega). Такое обозначение показывает, что мы имеем дело с комплексными представлениями гармонических функций вида e^{j \omega t}. Кроме того, над символом, обозначающим комплексный сигнал или комплексный импеданс, обычно ставят «домик» или точку:  \dot{U}(j\omega)\; чтобы отличать от соответствующих действительных (некомплексных) величин.

Физический смысл[править | править вики-текст]

Алгебраическая форма[править | править вики-текст]

Если рассматривать комплексный импеданс как комплексное число в алгебраической форме, то действительная часть соответствует активному сопротивлению, а мнимаяреактивному. То есть двухполюсник с импедансом \hat z(j \omega)\; можно рассматривать как последовательно соединенные резистор с сопротивлением \Re(\hat z(j \omega)) и чисто реактивный элемент с импедансом \Im(\hat z(j \omega))

Рассмотрение действительной части полезно при расчёте мощности, выделяемой в двухполюснике, поскольку мощность выделяется только на активном сопротивлении.

Тригонометрическая форма[править | править вики-текст]

Если рассматривать импеданс как комплексное число в тригонометрической форме, то модуль соответствует отношению амплитуд напряжения и тока (сдвиг фаз не учитывается), а аргумент — сдвигу фазы между током и напряжением, то есть на сколько ток отстаёт от напряжения.

Ограничения[править | править вики-текст]

Понятие импеданса применимо, если при приложении к двухполюснику гармонического напряжения, ток, вызванный этим напряжением, также гармонический той же частоты. Для этого необходимо и достаточно, чтобы двухполюсник был линейным и его свойства не менялись со временем. Если это условие не выполнено, то импеданс не может быть найден по следующей причине: невозможно получить выражение для импеданса, не зависящее от времени t, поскольку при вычислении импеданса множитель e^{j \omega t} в (1) не сокращается.

  • Однако и для линейных двухполюсников (для которых зависимость от времени сокращается) импеданс всё же зависит от частоты (за исключением случая когда двухполюсник сводится к схеме из одних резисторов и импеданс оказывается действительной величиной).

Практически это означает, что импеданс может быть вычислен для любого двухполюсника, состоящего из резисторов, катушек индуктивности и конденсаторов, то есть из линейных пассивных элементов. Также импеданс хорошо применим для активных цепей, линейных в широком диапазоне входных сигналов (например, цепи на основе операционных усилителей). Для цепей, импеданс которых не может быть найден в силу указанного выше ограничения, бывает полезным найти импеданс в малосигнальном приближении для конкретной рабочей точки. Для этого необходимо перейти к эквивалентной схеме и искать импеданс для нее.

Вычисление импеданса[править | править вики-текст]

Идеальные элементы[править | править вики-текст]

Резистор[править | править вики-текст]

Для резистора импеданс всегда равен его сопротивлению R и не зависит от частоты:

 z_R = R (2)

Конденсатор[править | править вики-текст]

Ток и напряжение для конденсатора связаны соотношением:

 i(t)=C \frac {dU}{dt} (3)

Отсюда следует, что при напряжении

 \hat u(j \omega, t)\;= U(\omega) e^{j(\omega t + \phi_u(\omega))} (4)

ток, текущий через конденсатор, будет равен:


     \hat i(j \omega, t)\;= C \frac {d}{dt} \left( U(\omega) e^{j(\omega t + \phi_u(\omega))} \right) =
     j \omega C U(\omega) e^{j(\omega t + \phi_u(\omega))}
   (5)

После подстановки (4) и (5) в (1) получаем:

 \hat z_C(j \omega)\;= \frac {1}{j \omega C} (6)

Катушка индуктивности[править | править вики-текст]

Аналогичное рассмотрение для катушки индуктивности приводит к результату:

 \hat z_L(j \omega)\;= j \omega L (7)

Общий случай[править | править вики-текст]

Для произвольного двухполюсника, состоящего из элементов с известным импедансом, нет необходимости производить приведенные выше вычисления с целью нахождения импеданса. Импеданс находится по обычным правилам расчёта сопротивления сложной цепи, то есть используются формулы для сопротивления при параллельном и последовательном соединении резисторов. При этом все математические операции производятся по правилам действий над комплексными числами. Например, импеданс идеальных последовательно соединенных резистора, конденсатора и катушки индуктивности будет равен:

 \hat z(j \omega)\;= R + \frac {1}{j \omega C} + j \omega L (8)

Экспериментальное измерение импеданса[править | править вики-текст]

Импеданс реальных элементов может быть измерен специальными приборами: измерителем RLC или анализатором импеданса. Эти приборы позволяют производить измерения в широком диапазоне частот и при различных напряжениях смещения.

Применение импеданса[править | править вики-текст]

Введение импеданса позволяет описывать поведение двухполюсника с реактивными свойствами при воздействии на него гармонического сигнала. Кроме того, в случае негармонического сигнала импеданс применяется столь же успешно. Для этого сигнал раскладывается на спектральные компоненты при помощи ряда Фурье или преобразования Фурье и рассматривается воздействие каждой спектральной компоненты. Вследствие линейности двухполюсника сумма откликов на спектральные компоненты равна отклику на исходный негармонический сигнал.

См. также[править | править вики-текст]

Примечания[править | править вики-текст]

  1. Science, p. 18, 1888
  2. Oliver Heaviside. The Electrician. P. 212; 23 July 1886 reprinted as Electrical Papers, p64, AMS Bookstore, ISBN 0-8218-3465-7

Литература[править | править вики-текст]

  • Л. А. Бессонов. Теоретические основы электротехники. — 9-е изд. — М.: Высшая школа, 1996.
  • Графов Б.М., Укше Е.А. Электрохимические цепи переменного тока. — М.: Наука, 1983.