Электрический телеграф

Материал из Википедии — свободной энциклопедии
Перейти к: навигация, поиск

Магнитные и электрические телеграфы. Постоянное стремление увеличить быстроту передачи информации на большие расстояния и сделать её более надёжной, не зависящей от разных случайных обстоятельств, погоды и т. п., привело постепенно к замене оптических телеграфов электрическими или, лучше сказать, электромагнитными.

Схема электротелеграфа

Первые попытки применения магнетизма и электричества[править | править исходный текст]

Первые попытки, мало, впрочем, удачные, применения магнетизма и электричества к телеграфированию относятся ещё к XVI ст. Так, с этой ранней поры Порта (Porta, 1538—1615), затем Кабео (Cabeo или Cabaeus, 1585—1650), позже Кирхер (Kircher, 1602—1680) и др. предлагали воспользоваться для данной цели магнитными взаимодействиями. В XVIII в. были сделаны попытки применить для той же цели статическое электричество. На возможность такого применения было ещё указано Маршаллом в 1753 г. Первый же настоящий прибор был устроен Лесажем в Женеве в 1774 г. Прибор его состоял из 24 изолированных проволок, соединявших две станции; приводя одну из них в сообщение с электрической машиной, можно было вызвать на другом конце её отклонение бузинового шарика соответствующего электроскопа. Затем Ломон в 1787 г. стал употреблять для подобного телеграфирования всего одну проволоку. Позже Сальва (Salva) устроил в 1798 г. телеграфную линию около Мадрида, сигнализация на которой производилась при помощи электрических искр. Однако такие способы сигнализации не могли применяться на больших расстояниях и не имели большого распространения. Это были попытки, интересные только с исторической точки зрения. Главный недостаток применения статического электричества для сигнализации заключается в том, что вследствие высоких напряжений (потенциалов) требовалась чрезвычайно тщательная изолировка проволок, что на практике представляет большие затруднения.

Применение химических действий гальванического тока[править | править исходный текст]

Электрическая телеграфия стала быстро развиваться и дала действительно блестящие результаты только с тех пор, как в ней начали применять не статическое электричество, а гальванический ток. — Первый такой прибор, основанный на химических действиях тока, был устроен в 1809 г. Зёммерингом (Sommering) в Мюнхене. Гальваническая батарея на одной станции могла быть присоединена к любым двум из 35 проволок, соединявших обе станции; концы всех этих 35 проволок на другой станции были погружены в слабый раствор серной кислоты; при прохождении тока жидкость разлагалась им, и на одной из проволок выделялся кислород, а на другой водород; каждой проволоке соответствовал какой-либо знак, буква или цифра, и, таким образом, сигнализация могла быть установлена на сравнительно больших расстояниях, до 10000 фт. (около 3 вер. или км), что достигнуто было Земмерингом уже в 1812 г. Телеграф, основанный на химических действиях тока, предлагался после Земмеринга и некоторыми другими изобретателями (Бэн и другие).

Первые применения магнитных действий тока. Приборы с магнитными стрелками[править | править исходный текст]

Стрелочный телеграф
Телеграф Шиллинга

Отклоняющее действие гальванического тока на магнитную стрелку было замечено ещё в 1802 г. итальянцем Романьези (Romagnesi), а затем вновь открыто и изучено Эрстедом (Oersted) в 1820 г. Вскоре же после того в заседании Парижской академии наук, где обсуждалось это открытие, Ампер высказал мысль о применении его к телеграфированию. Но первым, действительно придумавшим и устроившим (1830—32) электромагнитный телеграф был барон Павел Львович Шиллинг фон-Канштатт (род. в 1786 г., в Ревеле; ум. в 1837 г., в СПб.).

Телеграф этот в 1832 г. был проведён в Петербурге между Зимним дворцом и зданием министерства путей сообщения. Передаточный прибор его состоял из клавиатуры с 16 клавишами, служившими замыкателями тока того или другого направления, а приёмный прибор заключал в себе 6 мультипликаторов с астатическими магнитными стрелками, подвешенными на нитях, к которым прикреплены были бумажные кружки, с одной стороны белые, а с другой — чёрные. Соединялись обе станции между собой 8 проволоками, из которых 6 шли к мультипликаторам, 1 служила для обратного тока и 1 сообщалась с призывным аппаратом (звонком с часовым механизмом, приводимым в действие также электромагнитным путём, помощью отклонения магнитной стрелки). Посредством 16 клавиш передаточного прибора можно было послать ток того или другого направления и таким образом стрелки мультипликаторов поворачивать вперёд то белым, то чёрным кружком, составляя этим путём условленные знаки.

Барон Шиллинг впоследствии упростил свой приёмный прибор, оставив в нём только один мультипликатор вместо шести, причём условный алфавит был составлен из 36 различных отклонений магнитной стрелки. Для соединения станций Шиллинг употреблял подземные кабели; им высказана, однако, была мысль и о возможности подвешивать проволоки на столбах. 25-го июля 1837 г. барон Шиллинг умер, не успев выполнить повеления императора Николая Павловича соединить телеграфом Петербург с Кронштадтом.

Почти в одно время с Шиллингом, именно в 1833 г., знаменитые Гаусс и Вебер также устроили электромагнитный телеграф в Гёттингене: телеграф их соединял физический кабинет университета с магнитной и астрономической обсерваторией и действовал при помощи индукционных токов, возбуждавшихся движением магнита внутри проволочной катушки; токи эти на другой станции приводили в колебание магнит мультипликатора. К концу тридцатых годов появилось уже несколько видоизменений подобных электромагнитных телеграфов со стрелками, и они стали тогда быстро распространяться. Наибольший практически успех выпал на долю телеграфа Уитстона и Кука, представлявшего простое усовершенствование прибора Шиллинга, с которым Кук ознакомился в 1836 г. на лекциях в Гейдельбергском университете. Приборы Уитстона и Кука стали применяться в Англии уже с 1837 г. Штейнгейль в 1838 г. в Мюнхене устроил уже телеграфную линию в 5000 м (тогда как у Гаусса в Гёттингене расстояние было всего 700 м) и при этом сделал очень важное в истории телеграфа открытие, значительно удешевившее проводку телеграфных линий. Это открытие, способствовавшее быстрому распространению телеграфов, заключалось в том, что для соединения двух станций достаточно одного провода, так как обратный ток может идти через землю, если с одной стороны один из полюсов гальванической батареи соединить с большим медным листом, погружённым в землю (влажную), а с другой стороны соединить таким же образом с землёй конец самого провода.

Зеркальный гальванометр
Зеркальный гальванометр

Уже к концу XIX века приборы с магнитными стрелками употреблялись только на некоторых трансатлантических телеграфах. Так как при этом токи были очень слабы, то чрезвычайно малые отклонения стрелки, подвешенной на коконовой нити вместе с лёгким зеркальцем, наблюдались на особой шкале, на которую отбрасывались зеркальцем лучи от лампы при помощи собирательного стекла. Также, благодаря слуховому стрелочному прибору Джильберта сигналы можно было принимать не на глаз, а на слух.

Телеграфные приборы с указателями[править | править исходный текст]

Указательный телеграф Уитстона
Указательный телеграф Уитстона

Главную, существенную часть каждого такого прибора составляет электромагнит, который при пропускании через него тока притягивает к себе железную пластинку (так наз. якорь) и тем перемещает указатель по кругу с одного знака на другой или же (в другой системе), напротив, останавливает на короткое время указатель, движущийся по кругу при помощи часового механизма. Такого рода приборов было устроено очень много. Впервые около 1840 г. Уитстон, Б. С. Якоби, затем Брегет, Сименс, Дю-Монсель и многие др. изобрели различные приборы такого типа. На конец XIX века из них прибор Брегета оставался в употреблении на французских железных дорогах.

Телеграф Сименса и Гальске
Телеграф Сименса и Гальске

В «Главном обществе российских железных дорог» долгое время использовался индукционный телеграфный аппарат с указателем Сименса и Гальске. При повороте рукоятки манипулятора на ближайший знак индукционная катушка, находящаяся внутри прибора, поворачивается на пол-оборота между полюсами сильных магнитов; вследствие этого в проволоке катушки возбуждаются индукционные токи противоположных направлений соответственно последовательным полуоборотам. Эти токи, достигая приёмного аппарата, действуют на электромагнит и заставляют отклоняться между его полюсами особый маятник то в ту, то в другую сторону. При таком качании маятник поворачивает каждый раз зубчатое колесо на один его зубец и вместе с тем и указатель с одного знака на другой.

Телеграф Сименса и Гальске

Пишущие телеграфные приборы. Телеграф Морзе[править | править исходный текст]

Рассмотренные две системы телеграфирования, с помощью отклоняющихся магнитных стрелок и вращающихся по циферблату указателей, представляют, главным образом, то неудобство, что скоропроходящие знаки в них легко вызывают ошибки, контроль же между тем невозможен. Поэтому они стали постепенно вытесняться пишущими аппаратами, как только были придуманы и усовершенствованы способы записывания условных движений якоря электромагнита в телеграфном приёмнике, в который пропускается большей или меньшей продолжительности ток. В изобретениях и усовершенствованиях такого рода приборов принимали участие Б. С. Якоби, Штейнгейль, Морзе, Диньё, Сорре, Сименс и мн. др.

Один из первых пишущих телеграфов был устроен Б. С. Якоби. Условные знаки в этом приборе записывались на движущейся фарфоровой доске карандашом, прикреплённым к якорю электромагнита. Прибор Якоби был установлен в 1839 г. на подземной телеграфной линии в Петербурге и соединял кабинет императора Николая I в Царском Селе со зданием министерства путей сообщения.

Телеграф Морзе[править | править исходный текст]

Ключ Морзе

Аппарат Морзе в ряду различных систем телеграфов наиболее известный и до последнего времени был самый распространённый. Хотя прибор этот задуман Самуэлем Морзе и первые удачные результаты с ним получены уже в 1837 г., но только в 1844 г. он был усовершенствован (Альфр. Вайлем) настолько, что мог быть применён к делу.

Приёмный аппарат Морзе
Аппарат Морзе

Устроен прибор очень просто. Передатчик, манипулятор или ключ, служащий для замыкания и прерывания тока, состоит из металлического рычага, ось которого находится в сообщении с линейным проводом. Рычаг одним своим концом прижимается пружиной к металлическому выступу с зажимным винтом, посредством которого он соединяется проволокой с приёмным аппаратом станции и с землёю. Когда нажать рукой на другой конец рычага, то он коснётся другого выступа, соединённого с батареей. При этом, следовательно, ток будет пущен в линию на другую станцию. Главные части приёмника составляют: вертикальный электромагнит, рычаг в виде коромысла и часовой механизм для протягивания бумажной ленты, на которой оставляются рычагом условные знаки. Электромагнит при пропускании через него тока притягивает к себе железный стерженёк, находящийся на конце рычага; другое плечо рычага при этом подымается и придавливает стальное острие на его конце к бумажной ленте, которая непрерывно передвигается над ним посредством часового механизма. Когда ток прерывается, то рычаг оттягивается пружиной в прежнее положение. В зависимости от продолжительности тока на ленте острие рычага оставляет следы или в виде точек, или чёрточек. Различные комбинации этих знаков и составляют условный алфавит.

Такие знаки (чёрточки и точки) могут быть произведены прямо посредством нажатия на бумагу рычажного штифта, который будет оставлять на ней следы в виде углублений; таким именно образом это и было устроено в первоначальных приборах системы Морзе. Но рельефно пишущие приборы неудобны в том отношении, что требуют для своего действия довольно значительной силы тока. Поэтому вместо штифта стали применять небольшое колесо, которое нижней частью своей погружается в сосуд с густыми чернилами. Колёсико это при действии прибора постепенно поворачивается и оставляет на бумажной ленте след краски (John., 1854).

Соединение двух станций посредством обыкновенного телеграфа Морзе

Другое приспособление для записывания придумано Диньё. В нём колёсико, прикасающееся к покрытому краской валику, находится над бумажной лентой, к которой оно придавливается снизу остриём рычага.

Автоматическая передача[править | править исходный текст]

Прибор Уитстона[править | править исходный текст]

Перфоратор

С целью увеличить требуемую практикой быстроту действий телеграфных приборов Уитстон заменил в системе Морзе ручную передачу механической. Ручная передача и медленна, и сопряжена с ошибками. Поэтому Уитстон предложил пользоваться в передаточном аппарате быстро движущеюся бумажной лентой с заранее приготовленными на ней и надлежащим образом расположенными отверстиями, вызывающими замыкание токов, прямого и обратного, вследствие чего на бумажной ленте приёмной станции оставляются знаки условного алфавита Морзе. На бумажной ленте соответственно поданной депеше приготовляют посредством особого прибора, перфоратора, три ряда отверстий, из которых средний служит для передвижения ленты с помощью вращающейся зубчатки, а отверстия крайних рядов располагаются согласно морзевским знакам; при этом два отверстия, расположенные прямо одно над другим, соответствуют точке, а два отверстия, находящиеся в наклонном направлении, изображают чёрточку.

На передаточном приборе под крайними рядами отверстий помещаются две иглы, которым посредством качающегося коромысла сообщается очень быстрое движение вверх и вниз. Когда первая игла встретит не бумагу, а отверстие, то есть продвинется больше вверх, то система рычагов повернёт коммутатор, вследствие чего в линию пущен будет ток; когда же, вслед за тем, проникнет в отверстие вторая игла, то коммутатор повернётся в другую сторону и через линию пройдёт ток обратного направления. В приёмном аппарате в первом случае якорь электромагнита повернётся и приведёт в прикосновение с бумажной полосой перо, которое будет проводить на бумаге черту до тех пор, пока обратный ток (во втором случае) не повернёт якоря вместе с пером в другую сторону. Понятно, что если два отверстия на бумажной ленте передаточного прибора находятся прямо поперёк ленты, то вслед за первой иглой тотчас же попадёт в соответствующее отверстие и вторая игла, причём на приёмном аппарате получится очень короткая чёрточка, соответствующая точке в алфавите Морзе; когда же отверстия приходятся вкось, то черта получается более длинная. Передаточный аппарат может посылать таким образом до 120—130 слов в минуту (как мы видели приборы Юза до 30, а Морзе до 15 слов в минуту). Если над выбиванием отверстий на бумажных лентах будут заняты три или четыре телеграфиста, причём каждый из них может выбить в минуту около 30—40 слов и столько же их будут заняты перепиской полученных депеш, то линия может быть тогда вполне утилизирована, без промедления.

Система Поллака и Вирага[править | править исходный текст]

В конце XIX столетия был изобретён новый автоматический фотохимический прибор, способный передавать до 100000 слов в час или до 1666 слов в минуту, то есть он быстрее только что описанного прибора Уитстона по крайней мере раз в десять. Его преимущество заключалось ещё в том, что получаемая депеша писалась не особыми условными знаками, которые надо ещё переписывать, а довольно чётким курсивом.

В передаточный аппарат вставляется особая пластинка с тремя рядами различных величин кружков, прорезанных в ней заранее по поданной депеше с помощью особенной машинки с клавишами. Прорезы эти обусловливают замыкания трёх родов токов — прямого, обратного и прямого двойной силы. Токи эти, достигая приёмной станции, сообщают надлежащие движения зеркальцу при посредстве электромагнита и простого магнита в приёмном аппарате. Направленный на зеркальце пучок световых лучей от электрической лампы отражается от него на движущуюся светочувствительную ленту, на которой вследствие комбинации упомянутых движений образуются при проявлении обыкновенным фотографическим способом буквы, соответствующие поданной депеше. Аппарат Поллака и Вирага был испробован в Австро-Венгрии между Будапештом и Пресбургом (ныне Братислава) и дал отличные результаты.

См. также[править | править исходный текст]

При написании этой статьи использовался материал из Энциклопедического словаря Брокгауза и Ефрона (1890—1907).