Электромагнитный спектр

Материал из Википедии — свободной энциклопедии
Перейти к: навигация, поиск
Spectre.svg

Электромагни́тный спектр — совокупность всех диапазонов частот электромагнитного излучения.

Длина волны — частота — энергия фотона[править | править вики-текст]

В качестве спектральной характеристики электромагнитного излучения используют следующие величины:

Энергия фотона, согласно квантовой механике, пропорциональна частоте:  E = h \nu , где hпостоянная Планка, Е — энергия, \nu — частота. Длина электромагнитной волны в вакууме обратно пропорциональна частоте и выражается через скорость света: \nu\,\lambda\,=\,c. Говоря о длине электромагнитных волн в среде, обычно подразумевают эквивалентную величину длины волны в вакууме, которая отличается на коэффициент преломления, поскольку частота волны при переходе из одной среды в другую сохраняется, а длина волны — изменяется.

В верхней части шкалы приводятся значения энергии (в электронвольтах). Частоты, указанные в нижней части шкалы, выражены в герцах, а также в кратных единицах: кГц = 1000 Гц, МГц = 1000 кГц = 1000000 Гц, ГГц = 1000 МГц = 109 Гц, ТГц = 1000 ГГц = 1012 Гц.

Шкала частот (длин волн, энергий) является непрерывной, но традиционно разбита на ряд диапазонов. Соседние диапазоны могут немного перекрываться.

Основные электромагнитные диапазоны[править | править вики-текст]

γ-излучение[править | править вики-текст]

Гамма-лучи имеют энергию выше 124 000 эВ и длину волны меньше 0,01 нм = 0,1 Å.

Источники: космос, ядерные реакции, радиоактивный распад, синхротронное излучение.

Прозрачность вещества для гамма-лучей, в отличие от видимого света, зависит не от химической формы и агрегатного состояния вещества, а в основном от заряда ядер, входящих в состав вещества, и от энергии гамма-квантов. Поэтому поглощающую способность слоя вещества для гамма-квантов в первом приближении можно охарактеризовать его поверхностной плотностью (в г/см²). Длительное время считалось, что создание зеркал и линз для γ-лучей невозможно, однако согласно последним исследованиям в данной области, преломление γ-лучей возможно. Это открытие, возможно, означает создание нового раздела оптики - γ-оптики[1][2][3][4].

Резкой нижней границы для гамма-излучения не существует, однако обычно считается, что гамма-кванты излучаются ядром, а рентгеновские кванты — электронной оболочкой атома (это лишь терминологическое различие, не затрагивающее физических свойств излучения).

Рентгеновское излучение[править | править вики-текст]

  • от 0,1 нм = 1 Å (12 400 эВ) до 0,01 нм = 0,1 Å (124 000 эВ) — жёсткое рентгеновское излучение. Источники: некоторые ядерные реакции, электронно-лучевые трубки.
  • от 10 нм (124 эВ) до 0,1 нм = 1 Å (12 400 эВ) — мягкое рентгеновское излучение. Источники: электронно-лучевые трубки, тепловое излучение плазмы.

Рентгеновские кванты излучаются в основном при переходах электронов в электронной оболочке тяжёлых атомов на низколежащие орбиты. Вакансии на низколежащих орбитах создаются обычно электронным ударом. Рентгеновское излучение, созданное таким образом, имеет линейчатый спектр с частотами, характерными для данного атома (см. характеристическое излучение); это позволяет, в частности, исследовать состав веществ (рентгено-флюоресцентный анализ). Тепловое, тормозное и синхротронное рентгеновское излучение имеет непрерывный спектр.

В рентгеновских лучах наблюдается дифракция на кристаллических решётках, поскольку длины электромагнитных волн на этих частотах близки к периодам кристаллических решёток. На этом основан метод рентгено-дифракционного анализа.

Ультрафиолетовое излучение[править | править вики-текст]

Диапазон: От 400 нм (3,10 эВ) до 10 нм (124 эВ)

Наименование Аббревиатура Длина волны в нанометрах Количество энергии на фотон
Ближний NUV 400 — 300 3,10 — 4,13 эВ
Средний MUV 300 — 200 4,13 — 6,20 эВ
Дальний FUV 200 — 122 6,20 — 10,2 эВ
Экстремальный EUV, XUV 121 — 10 10,2 — 124 эВ
Вакуумный VUV 200 — 10 6,20 — 124 эВ
Ультрафиолет А, длинноволновой диапазон, Чёрный свет UVA 400 — 315 3,10 — 3,94 эВ
Ультрафиолет B (средний диапазон) UVB 315 — 280 3,94 — 4,43 эВ
Ультрафиолет С, коротковолновой, гермицидный диапазон UVC 280 — 100 4,43 — 12,4 эВ

Оптическое излучение[править | править вики-текст]

Излучение оптического диапазона (видимый свет и ближнее инфракрасное излучение) свободно проходит сквозь атмосферу, может быть легко отражено и преломлено в оптических системах. Источники: тепловое излучение (в том числе Солнца), флюоресценция, химические реакции, светодиоды.

Цвета видимого излучения, соответствующие монохроматическому излучению, называются спектральными. Спектр и спектральные цвета можно увидеть при прохождении узкого светового луча через призму или какую-либо другую преломляющую среду. Традиционно, видимый спектр делится, в свою очередь, на диапазоны цветов:

Цвет Диапазон длин волн, нм Диапазон частот, ТГц Диапазон энергии фотонов, эВ
Фиолетовый 380—440 790—680 2,82—3,26
Синий 440—485 680—620 2,56—2,82
Голубой 485—500 620—600 2,48—2,56
Зелёный 500—565 600—530 2,19—2,48
Жёлтый 565—590 530—510 2,10—2,19
Оранжевый 590—625 510—480 1,98—2,10
Красный 625—740 480—405 1,68—1,98

Ближнее инфракрасное излучение занимает диапазон от 207 ТГц (0,857 эВ) до 405 ТГц (1,68 эВ). Верхняя граница определяется способностью человеческого глаза к восприятию красного света, различной у разных людей. Как правило, прозрачность в ближнем инфракрасном излучении соответствует прозрачности в видимом свете.

Инфракрасное излучение[править | править вики-текст]

Инфракрасное излучение расположено между видимым светом и терагерцовым излучением. Диапазон: от 2000 мкм (150 ГГц) до 740 нм (405 ТГц).

Электромагнитное терагерцовое излучение[править | править вики-текст]

Терагерцовое излучение Терагерцовое (субмиллиметровое) излучение расположено между инфракрасным излучением и микроволнами, в диапазоне от 1 мм (300 ГГц) до 0,1 мм (3 ТГц).

Электромагнитные микро- и радиоволны[править | править вики-текст]

Для электромагнитных волн с частотой ниже 300 ГГц существуют достаточно монохроматичные источники, излучение которых пригодно для амплитудной и частотной модуляции. Поэтому, распределение частот в этой области всегда имеет в виду задачи передачи сигналов.

В отличие от оптического диапазона, исследование спектра в радиодиапазоне проводится не физическим разделением волн, а методами обработки сигналов.[источник не указан 1146 дней]

См. также[править | править вики-текст]

Примечания[править | править вики-текст]