Электрослабое взаимодействие

Материал из Википедии — свободной энциклопедии
Перейти к: навигация, поиск

В физике элементарных частиц электрослабое взаимодействие является общим описанием двух из четырёх фундаментальных взаимодействий: слабого взаимодействия и электромагнитного взаимодействия. Хотя эти два взаимодействия очень различаются на обычных низких энергиях, в теории они представляются как два разных проявления одного взаимодействия. При энергиях выше энергии объединения (порядка 100 ГэВ) они соединяются в единое электрослабое взаимодействие.

Мезон Мезон Барион Нуклон Кварк Лептон Электрон Адрон Атом Молекула Фотон W- и Z-бозоны Глюон Гравитон Электромагнитное взаимодействие Слабое взаимодействие Сильное взаимодействие Гравитация Квантовая электродинамика Квантовая хромодинамика Квантовая гравитация Электрослабое взаимодействие Теория великого объединения Теория всего Элементарная частица Вещество Бозон Хиггса
Краткий обзор различных семейств элементарных и составных частиц, и теории, описывающие их взаимодействия. Фермионы — слева, бозоны — справа. (пункты на картинке кликабельны)

Теория электрослабого взаимодействия[править | править вики-текст]

Теория электрослабого взаимодействия представляет собой созданную в конце 60-х годов 20-го века С. Вайнбергом, Ш. Глэшоу, А. Саламом единую (объединённую) теорию слабого и электромагнитного взаимодействий кварков и лептонов, осуществляемых посредством обмена четырьмя частицами — безмассовыми фотонами (электромагнитное взаимодействие) и тяжёлыми промежуточными векторными бозонами (слабое взаимодействие). Причём фотон и Z-бозон являются суперпозицией других двух частиц — B0 и W0:

\gamma = B^0 \cdot \cos\theta_W + W^0 \cdot \sin\theta_W

Z^0 = -B^0 \cdot \sin\theta_W + W^0 \cdot \cos\theta_W,

где \theta_W — электрослабый угол (угол Вайнберга)

Таким образом, в этой теории постулируется, что электромагнитное и слабое взаимодействия — это различные проявления одной силы.

Математически объединение осуществляется при помощи калибровочной группы SU(2) × U(1). Соответствующие калибровочные бозоны — фотон (электромагнитное взаимодействие) и W- и Z-бозоны (слабое взаимодействие). В Стандартной модели калибровочные бозоны слабого взаимодействия получают массу из-за спонтанного нарушения электрослабой симметрии от SU(2)\times SU(1)_Y к SU(1)_{em}, вызванного механизмом Хиггса (см. также Хиггсовский бозон). Нижние индексы используются, чтобы показать, что существуют различные варианты SU(1); генератор SU(1)_{em} дается выражением Q = Y/2 + I_3, где Y — генератор SU(1)_Y (названный гиперзаряд), а I_3 — один из генераторов SU(2) (компонент изоспина). Различие между электромагнетизмом и слабым взаимодействием появляется вследствие (нетривиальной) линейной комбинации Y и I_3, которая исчезает для бозона Хиггса (это собственное состояние как Y, так и I_3): SU(1)_{em} определяется как группа, генерируемая именно этой линейной комбинацией, и не подвергается спонтанному нарушению симметрии, поскольку не взаимодействует с бозоном Хиггса.

История[править | править вики-текст]

За вклад в объединение слабого и электромагнитного взаимодействий элементарных частиц Шелдону Глэшоу, Стивену Вайнбергу и Абдусу Саламу была присуждена Нобелевская премия по физике за 1979 г. Существование электрослабых взаимодействий было экспериментально установлено в две стадии: сначала были открыты нейтральные токи в совместном эксперименте Гаргамелла по рассеиванию нейтрино в 1973 г., а затем совместные эксперименты UA1 и UA2 в 1983 г. доказали существование W и Z калибровочных бозонов при помощи протон-антипротонных столкновений на ускорителе SPS (Super Proton Synchrotron, протонный суперсинхротрон).

Литература[править | править вики-текст]

См. также[править | править вики-текст]