Ядерное топливо

Материал из Википедии — свободной энциклопедии
Перейти к: навигация, поиск
ТВС (тепловыделяющая сборка)
Топливные таблетки.

Я́дерное то́пливо — материалы, которые используются в ядерных реакторах для осуществления цепной ядерной реакции деления. Ядерное топливо принципиально отличается от других видов топлива, используемых человечеством, оно чрезвычайно высокоэффективно, но и весьма опасно для человека и может стать причиной очень серьёзных аварий, что накладывает множество ограничений на его использование из соображений безопасности. По этой и многим другим причинам ядерное топливо гораздо сложнее в применении, чем любой вид органического топлива, и требует множества специальных технических и организационных мер при его использовании, а также высокую квалификацию персонала, имеющего с ним дело.

Общая информация[править | править вики-текст]

Цепная ядерная реакция представляет собой деление ядра на две части, называемые осколками деления, с одновременным выделением нескольких (2—3) нейтронов, которые, в свою очередь, могут вызвать деление следующих ядер. Такое деление происходит при попадании нейтрона в ядро атома исходного вещества. Образующиеся при делении ядра осколки деления обладают большой кинетической энергией. Торможение осколков деления в веществе сопровождается выделением большого количества тепла. Осколки деления — это ядра, образовавшиеся непосредственно в результате деления. Осколки деления и продукты их радиоактивного распада обычно называют продуктами деления. Ядра, делящиеся нейтронами любых энергий, называют ядерным горючим (как правило, это вещества с нечётным атомным числом). Существуют ядра, которые делятся только нейтронами с энергией выше некоторого порогового значения (как правило, это элементы с чётным атомным числом). Такие ядра называют сырьевым материалом, так как при захвате нейтрона пороговым ядром образуются ядра ядерного горючего. Комбинация ядерного горючего и сырьевого материала называется ядерным топливом. Ниже приведено распределение энергии деления ядра 235U между различными продуктами деления (в МэВ):

Кинетическая энергия осколков деления 162
Кинетическая энергия нейтронов деления 5
Энергия γ-излучения, сопровождающего захват нейтронов 10
Энергия γ-излучения продуктов деления 6
Энергия β-излучения продуктов деления 5
Энергия, уносимая нейтрино 11
Полная энергия деления ~200

Природный уран состоит из трёх изотопов: 238U (99,282 %), 235U (0,712 %) и 234U (0,006 %). Он не всегда пригоден как ядерное топливо, особенно если конструкционные материалы и замедлитель интенсивно поглощают нейтроны. В этом случае ядерное топливо изготавливают на основе обогащённого урана. В энергетических реакторах на тепловых нейтронах используют уран с обогащением менее 6 %, а в реакторах на быстрых и промежуточных нейтронах обогащение урана превышает 20 %. Обогащённый уран получают на специальных обогатительных заводах.

Классификация[править | править вики-текст]

Ядерное топливо делится на два вида:

  • Природное урановое, содержащее делящиеся ядра 235U, а также сырьё 238U, способное при захвате нейтрона образовывать плутоний 239Pu;
  • Вторичное топливо, которое не встречается в природе, в том числе 239Pu, получаемый из топлива первого вида, а также изотопы 233U, образующиеся при захвате нейтронов ядрами тория 232Th.

По химическому составу, ядерное топливо может быть:

Теоретические аспекты применения[править | править вики-текст]

На выделенном фрагменте этого муляжа ТВС с вырезанными для удобства обзора секторами ТВЭЛов видны топливные таблетки.

Ядерное топливо используется в ядерных реакторах в виде таблеток размером в несколько сантиметров, где оно обычно располагается в герметично закрытых тепловыделяющих элементах (ТВЭЛах), которые в свою очередь для удобства использования объединяются по нескольку сотен в тепловыделяющие сборки (ТВС).

К ядерному топливу применяются высокие требования по химической совместимости с оболочками ТВЭЛов, у него должна быть достаточная температура плавления и испарения, хорошая теплопроводность, небольшое увеличение объёма при нейтронном облучении, технологичность производства.

Металлический уран сравнительно редко используют как ядерное топливо. Его максимальная температура ограничена 660 °C. При этой температуре происходит фазовый переход, в котором изменяется кристаллическая структура урана. Фазовый переход сопровождается увеличением объёма урана, что может привести к разрушению оболочки ТВЭЛов. При длительном облучении в температурном интервале 200—500 °C уран подвержен радиационному росту. Это явление заключается в том, что облучённый урановый стержень удлиняется. Экспериментально наблюдалось увеличение длины уранового стержня в два — три раза[1].

Использование металлического урана, особенно при температуре больше 500 °C, затруднено из-за его распухания. После деления ядра образуются два осколка деления, суммарный объём которых больше объёма атома урана (плутония). Часть атомов — осколков деления являются атомами газов (криптона, ксенона и др.). Атомы газов накапливаются в по́рах урана и создают внутреннее давление, которое увеличивается с повышением температуры. За счёт изменения объёма атомов в процессе деления и повышения внутреннего давления газов уран и другие ядерные топлива начинают распухать. Под распуханием понимают относительное изменение объёма ядерного топлива, связанное с делением ядер.

Распухание зависит от выгорания и температуры ТВЭЛов. Количество осколков деления возрастает с увеличением выгорания, а внутреннее давление газа — с увеличением выгорания и температуры. Распухание ядерного топлива может привести к разрушению оболочки ТВЭЛа. Ядерное топливо менее подвержено распуханию, если оно обладает высокими механическими свойствами. Металлический уран как раз не относится к таким материалам. Поэтому применение металлического урана в качестве ядерного топлива ограничивает глубину выгорания, которая является одной из главных характеристик ядерного топлива.

Радиационная стойкость и механические свойства топлива улучшаются после легирования урана, в процессе которого в уран добавляют небольшое количество молибдена, алюминия и других металлов. Легирующие добавки снижают число нейтронов деления на один захват нейтрона ядерным топливом. Поэтому легирующие добавки к урану стремятся выбрать из материалов, слабо поглощающих нейтроны.

К хорошим ядерным топливам относятся некоторые тугоплавкие соединения урана: окислы, карбиды и интерметаллические соединения. Наиболее широкое применение получила керамика — двуокись урана UO2. Её температура плавления равна 2800 °C, плотность — 10,2 г/см³. У двуокиси урана нет фазовых переходов, она менее подвержена распуханию, чем сплавы урана. Это позволяет повысить выгорание до нескольких процентов. Двуокись урана не взаимодействует с цирконием, ниобием, нержавеющей сталью и другими материалами при высоких температурах. Основной недостаток керамики — низкая теплопроводность — 4,5 кДж/(м·К), которая ограничивает удельную мощность реактора по температуре плавления. Так, максимальная плотность теплового потока в реакторах ВВЭР на двуокиси урана не превышает 1,4·103 кВт/м², при этом максимальная температура в стержневых ТВЭЛах достигает 2200 °C. Кроме того, горячая керамика очень хрупка и может растрескиваться.

Плутоний относится к низкоплавким металлам. Его температура плавления равна 640 °C. У плутония плохие пластические свойства, поэтому он почти не поддаётся механической обработке. Технология изготовления ТВЭЛов усложняется токсичностью плутония. Для приготовления ядерного топлива обычно применяются двуокись плутония, смесь карбидов плутония с карбидами урана, сплавы плутония с металлами.

Высокими теплопроводностью и механическими свойствами обладают дисперсионные топлива, в которых мелкие частицы UO2, UC, PuO2 и других соединений урана и плутония размещают гетерогенно в металлической матрице из алюминия, молибдена, нержавеющей стали и др. Материал матрицы и определяет радиационную стойкость и теплопроводность дисперсионного топлива. Например, дисперсионное топливо Первой АЭС состояло из частиц сплава урана с 9 % молибдена, залитых магнием.

Практическое применение[править | править вики-текст]

На АЭС и другие ядерные установки топливо приходит в виде довольно сложных технических устройств — тепловыделяющих сборок (ТВС), которые в зависимости от типа реактора загружаются непосредственно во время его работы (как на реакторах типа РБМК в России) на место выгоревших ТВС или заменяют отработавшие сборки большими группами во время ремонтной кампании (как на российских реакторах ВВЭР или их аналогах в других странах, PWR и других). В последнем случае при каждой новой загрузке меняется чаще всего треть топлива и полностью изменяется его расстановка в активной зоне реактора, наиболее выгоревшие сборки с топливом, из центра активной зоны, выгружаются, на их место ставится вторая треть сборок, со средним выгоранием и расположением. На их место в свою очередь ставятся наименее выгоревшие ТВС, с периферии активной зоны; в то время как на периферию загружается свежее топливо. Такая схема перестановки топлива является традиционной и обусловлена многими причинами, например стремлением обеспечить равномерное энерговыделение в топливе и максимальный запас до кризиса теплообмена воды на оболочках ТВЭЛ.

Описание загрузки ядерного топлива в активную зону реактора, данное выше, всё же является весьма условным, позволяющим иметь общее представление об этом процессе. На самом деле загрузка топлива осуществляется сборками с различными степенями обогащения топлива и её предваряют сложнейшие ядерно-физические расчёты конфигурации активной зоны реактора в специализированном программном обеспечении[2], которые совершаются на годы вперёд и позволяют планировать топливные и ремонтные кампании для увеличения показателей эффективности работы АЭС, например КИУМа. Кроме того, если конфигурация топлива не будет удовлетворять определённым требованиям, важнейшими из которых являются различные коэффициенты неравномерности энерговыделения в активной зоне, реактор не сможет работать вовсе или будет неуправляемым. Кроме различной степени обогащения разных ТВС применяются другие решения для обеспечения нужной конфигурации активной зоны и стабильности её характеристик в течение топливной кампании, например ТВС, в которых вместо некоторых ТВЭЛов содержатся поглощающие элементы (ПЭЛы), которые компенсируют изначальную избыточную реактивность свежего топлива, выгорают в процессе работы реактора и по мере использования топлива всё меньше влияют на его реактивность, что в итоге выравнивает по времени величину энерговыделения на протяжении всего срока работы тепловыделяющей сборки. В настоящий момент в топливе промышленных водо-водяных реакторов во всём мире практически перестали использовать ПЭЛы с борным поглотителем, долгое время являвшимися почти безальтернативными элементами, и перешли на более прогрессивный способ[3] — внесение с теми же целями гадолиниевого выгорающего поглотителя непосредственно в топливную матрицу; этот способ имеет много важных преимуществ.

После выгрузки из активной зоны реактора отработавшего топлива его помещают в специальный бассейн выдержки, обычно располагающийся в непосредственной близости от реактора. Дело в том, что в отработавших ТВС содержится большое количество осколков деления урана, сразу после выгрузки каждый ТВЭЛ в среднем содержит 300000 Кюри радиоактивных веществ, которые выделяют энергию 100 кВт*час. За счёт этой энергии использованное ядерное топливо имеет свойство саморазогреваться до больших температур без принятия специальных мер (недавно выгруженное топливо может разогреться на воздухе примерно до 300 °C) и является высокорадиоактивным, поэтому его хранят 3-4 года в бассейнах с определённым температурным режимом под слоем воды, защищающим персонал от ионизирующего излучения продуктов распада урана. По мере выдержки уменьшается радиоактивность топлива и мощность его остаточных энерговыделений, обычно через 3 года, когда саморазогрев ТВС сокращается до 50-60 °C, его извлекают и отправляют для хранения, захоронения или переработки[4][5][6][7].

Получение[править | править вики-текст]

Урановое топливо[править | править вики-текст]

Урановое ядерное топливо получают переработкой руд. Процесс происходит в несколько этапов:

  • Для бедных месторождений: В современной промышленности в силу отсутствия богатых урановых руд (исключения составляют канадские и австралийские месторождения типа несогласия[8], в которых концентрация урана доходит до 3 %) используется способ подземного выщелачивания руд. Это исключает дорогостоящую добычу руды. Предварительная подготовка идёт непосредственно под землёй. Через закачные скважины под землю над месторождением закачивается серная кислота, иногда с добавлением солей трёхвалентного железа (для окисления урана U(IV) до U(VI)), хотя руды часто содержат железо и пиролюзит, которые облегчают окисление. Через откачные скважины специальными насосами раствор серной кислоты с ураном поднимается на поверхность. Далее он непосредственно поступает на сорбционное, гидрометаллургическое извлечение и одновременное обогащение урана.
  • Для рудных месторождений: используют обогащение руды и радиометрическое обогащение руды.
  • Гидрометаллургическая переработка — дробление, выщелачивание, сорбционное или экстракционное извлечение урана с получением очищенной закиси-окиси урана (U3O8), диураната натрия (Na2U2O7) или диураната аммония ((NH4)2U2O7).
  • Перевод урана из оксида в тетрафторид UF4, или из оксидов непосредственно для получения гексафторида UF6, который используется для обогащения урана по изотопу 235.
  • Обогащение методами газовой термодиффузии или центрифугированием.
  • UF6, обогащенный по 235 изотопу переводят в двуокись UO2, из которой изготавливают «таблетки» ТВЭЛов или получают другие соединения урана с этой же целью.

Ториевое топливо[править | править вики-текст]

Торий в настоящее время в качестве сырья для производства ядерного топлива не применяется в силу следующих причин:

  1. Запасы урана достаточно велики;
  2. Извлечение тория сложнее и дороже из-за отсутствия богатых месторождений;
  3. Образование 232U, который, в свою очередь, образует γ-активные ядра 212Bi, 208Tl, затрудняющие производство ТВЭЛов;
  4. Переработка облучённых ториевых ТВЭЛов сложнее и дороже переработки урановых.

Плутониевое топливо[править | править вики-текст]

Плутониевое ядерное топливо в настоящее время также не применяется, что связано с его крайне сложной химией. За многолетнюю историю атомной промышленности неоднократно предпринимались попытки использования плутония как в виде чистых соединений, так и в смеси с соединениями урана, однако успехом они не увенчались. Топливо для АЭС, содержащее плутоний, называется MOX-топливо. Применение его в реакторах ВВЭР нецелесообразно из-за уменьшения примерно в 2 раза периода разгона[10], на что не рассчитаны штатные системы управления реактором.

Регенерация[править | править вики-текст]

При работе ядерного реактора, топливо выгорает не полностью, имеет место процесс воспроизводства отдельных изотопов (Pu). В связи с этим, отработанные ТВЭЛы направляют на переработку для регенерации топлива и повторного его использования.

В настоящее время для этих целей наиболее широко применяется пьюрекс-процесс, суть которого состоит в следующем: ТВЭЛы разрезают на части и растворяют в азотной кислоте, далее раствор очищают от продуктов деления и элементов оболочки, выделяют чистые соединения U и Pu. Затем, полученный диоксид плутония PuO2 направляют на изготовление новых сердечников, а уран либо на изготовление сердечников, либо на обогащение 235U.

Переработка и регенерация высокорадиоактивных веществ — сложный и дорогостоящий процесс. ТВЭЛы после извлечения из реакторов проходят выдержку в течение нескольких лет (обычно 3—6) в специальных хранилищах. Трудности вызывает также переработка и захоронение отходов, непригодных к регенерации. Стоимость всех этих мер оказывает существенное влияние на экономическую эффективность атомных электростанций.

Примечания[править | править вики-текст]

  1. Харьковский физико-технический институт, Наукова думка, Киев, 1978, стр. 45.
  2. например в России БИПР-7А (разработки Курчатовского института) для ВВЭР и DINA-РБМК для РБМК (разработки НИКИЭТ имени Н. А. Доллежаля) или программа WIMS-D/4, использующаяся для расчёта некоторых европейских реакторов
  3. промышленная эксплуатация такого топлива в России насчитывает примерно 10 лет
  4. Бартоломей Г.Г., Байбаков В.Д., Алхутов М.С., Бать Г.А. Основы теории и методы расчета ядерных энергетических реакторов. — Москва: Энергоатомиздат, 1982.
  5. Т.Х.Маргулова Атомные электрические станции. — Москва: ИздАТ, 1994.
  6. Б.А.Дементьев Кинетика и регулирование ядерных реакторов. — Москва: Энергоатомиздат, 1986.
  7. Пособие по физике реактора ВВЭР-1000.—БАЭС,ЦПП, 2003
  8. Формирование урановых месторождений «типа несогласия» с богатыми рудами связывается, преж­де всего, с древними (протерозойскими) рудообразующими процессами, проявленными в зонах струк­турно-стратиграфических несогласий (ССН). Соот­ветственно, перспективными для обнаружения мес­торождений данного типа являются районы широко­го развития докембрийских формаций — щиты, сре­динные массивы и выступы кристаллического фун­дамента. К таким тектоническим структурам в Рос­сии относятся Балтийский щит, Воронежский кри­сталлический массив, Восточно-Саянский, Патомский и Алданский районы южного обрамления Си­бирской платформы, Анабарский щит и Омолонский массив, примыкающая к Северному Ледовитому оке­ану часть полуострова Таймыр и северо-восточное окончание Чукотки.
  9. англ. Yellowcake
  10. Период разгона реактора — время, за которое мощность ядерного реактора изменяется в e раз.

Литература[править | править вики-текст]

  • БСЭ
  • Петунин В. П. Теплоэнергетика ядерных установок М.: Атомиздат, 1960.
  • Левин В. Е. Ядерная физика и ядерные реакторы 4-е изд. — М.: Атомиздат, 1979.