Язык разметки прогнозного моделирования

Материал из Википедии — свободной энциклопедии
Перейти к: навигация, поиск

Язык разметки для прогнозного моделирования (Predictive Model Markup Language — PMML) является языком разметки на основе XML, разработанным Data Mining Group (DMG), и обеспечивающим приложениям способ определения моделей, относящихся к прогнозной аналитике и анализу данных, а также обмен такими моделями между PMML-совместимыми приложениями.

PMML предоставляет приложениям независимый от производителей метод определения модели, поэтому проприетарные проблемы и несовместимости больше не являются препятствием для обмена моделями между приложениями. Он позволяет пользователям разрабатывать модели в приложении одного производителя и использовать приложения других производителей для визуализации, анализа, оценки и иного использовани\ моделей. Ранее это было затруднено, но с PMML, обмен моделями между совместимыми приложениями упростился.

Поскольку PMML — это стандарт на основе XML, его спецификация представлена в форме языка описания XML Schema.

Компоненты PMML[править | править вики-текст]

PMML содержит интуитивно понятную структуру для описания модели анализа данных, будь то искусственная нейронная сеть или логистическая регрессия.

Её можно описать следующей последовательностью компонент:[1][2]

  • Заголовок (Header): содержит общую информацию о документе PMML, например, информацию об авторском праве на модель, её описание, информацию о приложении, использованном для создания модели, например его название и версию. Он также содержит атрибут для временной метки, используемый для определения даты создания модели.
  • Словарь данных (Data Dictionary): содержит определения всех возможных полей, используемых в модели. Именно здесь поле определяется как непрерывное, категориальное, или порядковое (атрибут optype). В зависимости от этого определения затем определяются соответствующие диапазоны значений, а также тип данных (например, строка или тип с двойной точностью).
  • Преобразования данных (Data Transformations): преобразования позволяют отобразить пользовательские данные в требуемой форме для использования модели интеллектуального анализа данных. PMML определяет несколько видов простых преобразований данных.
    • Нормализация (Normalization): отображает значения в числа, вход может быть непрерывным или дискретным.
    • Дискретизация (Discretization): отображает непрерывные значения в дискретные значения.
    • Отображение значений (Value mapping): отображает дискретные значения в дискретные значения.
    • Функции (Functions): вычисляет значения путем применения функции к одному или нескольким параметрам.
    • Агрегация (Aggregation): используется для суммирования или сборки группы значений.
  • Модель (Model): содержит определение модели интеллектуального анализа данных. Многослойная искусственная нейронная сеть прямого распространения является наиболее распространенным представлением нейронных сетей в современных приложениях, учитывая популярность и эффективность, связанные с её алгоритмом обучения, известным как метод обратного распространения ошибки. Такая сеть представлен в PMML элементом «NeuralNetwork», содержащим следующие атрибуты:
    • Название модели (атрибут modelName)
    • Название функции (атрибут functionName)
    • Название алгоритма (атрибут algorithmName)
    • Функция активации (атрибут activationFunction)
    • Количество слоев (атрибут numberOfLayers)

За этой информацией следуют три вида нейронных слоев, которые определяют архитектуру модели нейронной сети, представленной документом PMML. Это атрибуты NeuralInputs, NeuralLayer и NeuralOutputs. Помимо нейронных сетей, PMML позволяет представлять многие другие модели интеллектуального анализа данных, включая метод опорных векторов, ассоциативные правила, наивный байесовский классификатор, модели кластеризации, текстовые модели, деревья принятия решений, а также различные регрессионные модели.

  • Схема анализа (Mining Schema): схема интеллектуального анализа данных содержит список всех полей, используемых в модели. Это может быть подмножество полей, определенное в словаре данных. Она содержит конкретные сведения о каждом поле, такие как:
    • Название (атрибут name): должно ссылаться на поле в словаре данных
    • Тип использования (атрибут usageType): определяет способ использования поля в модели. Стандартные значения: активное, прогнозируемое, и дополнительное. Прогнозируемыми являются те поля, значения которых прогнозируются моделью.
    • Обработка выбросов (атрибут outliers): определяет используемый способ обработки выбросов. В PMML выбросы можно рассматривать как отсутствующие значения, как экстремальные значения (на основании определения верхних и нижних значений для той или иной области), или как есть.
    • Правило замены отсусттвующих значений (атрибут missingValueReplacement): если этот атрибут указан, то отсутствующее значение автоматически заменяется заданным значением.
    • Обработка отсутствующего значения (атрибут missingValueTreatment): показывает, чем заменяется отсутствующее значение (например, значением, средним или медианой).
  • Цели (Targets): позволяют пост-обработку прогнозируемого значения в формате масштабирования, если выход модели непрерывен. Цели могут быть также использованы для задач классификации. В этом случае атрибут priorProbability указывает вероятности по умолчанию для соответствующей категории цели. Он используется, если логика прогнозирования не производит результат сама по себе. Это может произойти, например, если входное значение отсутствует, и нет другого способа определить недостающие значения.
  • Выход (Output): этот элемент может быть использован, чтобы указать все требуемые поля вывода, ожидаемые от модели. Это особенности прогнозируемого поля а также обычно само прогнозируемое значение, вероятность, близость к кластеру (для моделей кластеризации), стандартная ошибка и т. д.

PMML 4.0[править | править вики-текст]

Последняя версия PMML, 4.0, была выпущена 16 июня 2009.[3][4][5]

Среди новых возможностей:

  • Пояснение модели: Сохранение показателей оценки и эффективности модели в самом файле PMML.
  • Множественные модели: Возможности для композиции моделей, ансамблей, и сегментации (например, объединение регрессионного анализа и деревьев решений).

История выпусков[править | править вики-текст]

Версия 0.7 July 1997
Версия 0.9 July 1998
Версия 1.0 August 1999
Версия 1.1 August 2000
Версия 2.0 August 2001
Версия 2.1 March 2003
Версия 3.0 October 2004
Версия 3.1 December 2005
Версия 3.2 May 2007
Версия 4.0 June 2009

Продукты, поддерживающие PMML[править | править вики-текст]

Спектр программных продуктов, предлагаемых для создания и использования PMML:

  • IBM InfoSphere Warehouse: создает PMML 3.0 и 3.1 только для последовательностей моделей. Принимает (оценивает и визуализирует) PMML 3.1 и младше.
  • IBM SPSS Modeler: создает и оценивает PMML 3.2 и 4.0 для различных моделей.
  • IBM SPSS Statistics: создает PMML 3.2 и 4.0 для различных моделей.
  • KNIME: создает и принимает PMML 4.0 для нейронных сетей, деревьев решений, моделей кластеризации, регрессионных моделей, и метода опорных векторов. Начиная с версии 2.4.0, KNIME предлагает расширенную поддержку прдварительной обработки PMML, включая возможность правки существующего кода PMML.
  • KXEN: создает PMML 3.2 для регрессионных моделей (том числе моделей интеллектуального анализа данных) и кластерного анализа.
  • Open Data Group’s Augustus: Создает PMML 4.0 для деревьев, наивного байесовского классификатора и моделей на основе набора правил. Принимает PMML 4.0 модели деревьев, наивного байесовского классификатора, на основе набора правил и регрессионные модели. Предыдущие версии создавали и принимали регрессионные модели, модели деревьев и наивного байесовского классификатора.
  • Oracle Data Mining: поддерживает основные возможности PMML 3.1 для регрессионных моделей. Импортированные модели становятся моделями Oracle Data Mining (ODM), пригодными к выгрузке в Exadata.
  • RapidMiner: Использует свободное расширение PMML, несколько типов моделей можно экспортировать в PMML.
  • Salford-Systems CART: система деревьев решений, создающая PMML 3.1.
  • Zementis PMML Converter: проверяет, правит и преобразует файлы PMML версий 2.0, 2.1, 3.0, 3.1, 3.2, и 4.0.
  • Zementis Universal PMML Plug-in: оценка в базе данных для PMML 2.0, 2.1, 3.0, 3.1, 3.2, и 4.0 для нескольких моделей интеллектуального анализа. Доступна в EMC Greenplum Database.

Генератор преобразований[править | править вики-текст]

PMML предлагает большой набор преобразований данных, в том числе отображение значений, нормализацию и дискретизацию. Он также предлагает несколько встроенных функций, а также арифметические и логические операции, которые могут быть объединены для представления сложных этапов предварительной обработки. С использованием Transformations Generator можно графически создать преобразование и получить соответствующий код на PMML.

Ссылки[править | править вики-текст]

  1. A. Guazzelli, M. Zeller, W. Chen, and G. Williams. PMML: An Open Standard for Sharing Models. The R Journal, Volume 1/1, May 2009.
  2. A. Guazzelli, W. Lin, T. Jena (2010). PMML in Action: Unleashing the Power of Open Standards for Data Mining and Predictive Analytics. CreateSpace.
  3. Data Mining Group website | PMML 4.0 — Changes from PMML 3.2
  4. Zementis website | PMML 4.0 is here!
  5. R. Pechter. What’s PMML and What’s New in PMML 4.0? The ACM SIGKDD Explorations Newsletter, Volume 11/1, July 2009.

Ссылки[править | править вики-текст]