Топология

Материал из Википедии — свободной энциклопедии
Перейти к: навигация, поиск
Лента Мёбиуса — поверхность с одной стороной и одним краем; пример объекта, изучаемого в топологии
Гомеоморфность бублика и кружки

Тополо́гия (от др.-греч. τόπος — место и λόγος — слово, учение) — раздел математики, изучающий в самом общем виде явление непрерывности, в частности свойства пространства, которые остаются неизменными при непрерывных деформациях, например, связность, ориентируемость. В отличие от геометрии, в топологии не рассматриваются метрические свойства объектов (например, расстояние между парой точек). Например, с точки зрения топологии, кружка и бублик (полноторий) неотличимы.

Весьма важными для топологии являются понятия гомеоморфизма и гомотопии. Грубо говоря, это типы деформации, происходящие без разрывов и склеиваний.

История[править | править вики-текст]

Семь мостов Кёнигсберга — известная задача, решённая Эйлером и способствовавшая развитию топологии[1]

Раздел математики, который мы теперь называем топологией, берет свое начало с изучения некоторых задач геометрии. Различные источники указывают на первые топологические по духу результаты в работах Лейбница и Эйлера, однако термин «топология» впервые появился в 1847 году в работе Листинга. Листинг определяет топологию так:

Под топологией будем понимать учение о модальных отношениях пространственных образов, или о законах связности, взаимного положения и следования точек, линий, поверхностей, тел и их частей или их

совокупности в пространстве, независимо от отношений мер и величин[2]

Когда топология еще только зарождалась (XVIII—XIX века), её называли геометрия размещения (лат. geometria situs) или анализ размещения (лат. analysis situs). Приблизительно с 1925 по 1975 годы топология являлась сильно развивающейся отраслью в математике.

Общая топология зародилась в конце XIX в. и оформилась в самостоятельную математическую дисциплину в начале XX в. Основополагающие работы принадлежат Хаусдорфу, Пуанкаре, Александрову, Урысону, Брауэру.

Разделы топологии[править | править вики-текст]

Общая топология[править | править вики-текст]

Общая топология, или теоретико-множественная топология — раздел топологии, в котором изучается понятие непрерывности в чистом виде. Здесь исследуются фундаментальные вопросы топологии, а также отдельные вопросы, такие как связность и компактность.

Алгебраическая топология[править | править вики-текст]

Алгебраическая топология — раздел, в котором происходит изучение непрерывности с использованием алгебраических объектов, вроде гомотопических групп и гомологий.

Дифференциальная топология[править | править вики-текст]

Дифференциальная топология — раздел, где главным образом изучаются гладкие многообразия с точностью до диффеоморфизма и их включения (размещения) в другие многообразия. Этот раздел включает в себя маломерную топологию, в том числе теорию узлов.

Вычислительная топология[править | править вики-текст]

Вычислительная топология — раздел, находящийся на пересечении топологии, вычислительной геометрии и теории вычислительной сложности. Занимается созданием эффективных алгоритмов для решения топологических проблем и применением топологических методов для решения алгоритмических проблем, возникающих в других областях науки.

См. также[править | править вики-текст]

Примечания[править | править вики-текст]

  1. J. J. O’Connor, E. F. Robertson. History of Topology — The MacTutor History of Mathematics archive, University of St. Andrews.
  2. Колмогоров А. Н., Юшкевич А. П., 1981, с. 98.

Литература[править | править вики-текст]

  • Болтянский В. Г., Ефремович В. А. Наглядная топология. — М.: Наука, 1982. (Библиотечка «Квант», Вып. 21).
  • Васильев В. А. Введение в топологию. — М.: ФАЗИС, 1997. (Библиотека студента-математика. Вып. 3).
  • Вербицкий М. Лекции и задачи по топологии. — 2009.
  • Виро О. Я., Иванов О. А., Харламов В. М., Нецветаев Н. Ю. Элементарная топология. — 2007.
  • Коснёвски Ч. Начальный курс алгебраической топологии. — М.: Мир, 1983.
  • Милнор Дж., Уоллес А. Дифференциальная топология. Начальный курс. — М.: Мир, 1972.
  • Милнор Дж., Сташеф Дж. Характеристические классы. — М.: Мир, 1979.
  • Прасолов В. В. Наглядная топология. — М.: МЦНМО, 1995.
  • Стюарт Я. Топология. // Квант, № 7, 1992.

Ссылки[править | править вики-текст]

Логотип Викисловаря
В Викисловаре есть статья «топология»