U-критерий Манна — Уитни

Материал из Википедии — свободной энциклопедии
Перейти к: навигация, поиск

U-критерий Манна — Уитни (англ. Mann — Whitney U-test) — статистический критерий, используемый для оценки различий между двумя независимыми выборками по уровню какого-либо признака, измеренного количественно. Позволяет выявлять различия в значении параметра между малыми выборками.

Другие названия: критерий Манна — Уитни — Уилкоксона (англ. Mann — Whitney — Wilcoxon, MWW), критерий суммы рангов Уилкоксона (англ. Wilcoxon rank-sum test) или критерий Уилкоксона — Манна — Уитни (англ. Wilcoxon — Mann — Whitney test). Реже: критерий числа инверсий[1].

История[править | править вики-текст]

Данный метод выявления различий между выборками был предложен в 1945 году Фрэнком Уилкоксоном (F. Wilcoxon). В 1947 году он был существенно переработан и расширен Х. Б. Манном (H. B. Mann) и Д. Р. Уитни (D. R. Whitney), по именам которых сегодня обычно и называется.

Описание критерия[править | править вики-текст]

Простой непараметрический критерий. Мощность критерия выше, чем у Q-критерия Розенбаума.

Этот метод определяет, достаточно ли мала зона перекрещивающихся значений между двумя рядами (ранжированным рядом значений параметра в первой выборке и таким же во второй выборке). Чем меньше значение критерия, тем вероятнее, что различия между значениями параметра в выборках достоверны.

Ограничения применимости критерия[править | править вики-текст]

  1. В каждой из выборок должно быть не менее 3 значений признака. Допускается, чтобы в одной выборке было два значения, но во второй тогда не менее пяти.
  2. В выборочных данных не должно быть совпадающих значений (все числа — разные) или таких совпадений должно быть очень мало.

Использование критерия[править | править вики-текст]

Для применения U-критерия Манна — Уитни нужно произвести следующие операции.

  1. Составить единый ранжированный ряд из обеих сопоставляемых выборок, расставив их элементы по степени нарастания признака и приписав меньшему значению меньший ранг. Общее количество рангов получится равным:
    N=n_1+n_2,
    где n_1 — количество элементов в первой выборке, а n_2 — количество элементов во второй выборке.
  2. Разделить единый ранжированный ряд на два, состоящие соответственно из единиц первой и второй выборок. Подсчитать отдельно сумму рангов, пришедшихся на долю элементов первой выборки, и отдельно — на долю элементов второй выборки. Определить большую из двух ранговых сумм (T_x), соответствующую выборке с n_x элементами.
  3. Определить значение U-критерия Манна — Уитни по формуле:
    U=n_1\cdot n_2+\frac{n_x\cdot(n_x+1)}{2}-T_x.
  4. По таблице для избранного уровня статистической значимости определить критическое значение критерия для данных n_1 и n_2. Если полученное значение U меньше табличного или равно ему, то признается наличие существенного различия между уровнем признака в рассматриваемых выборках (принимается альтернативная гипотеза). Если же полученное значение U больше табличного, принимается нулевая гипотеза. Достоверность различий тем выше, чем меньше значение U.
  5. При справедливости нулевой гипотезы критерий имеет математическое ожидание M(U)=\frac{n_1\cdot n_2}{2} и дисперсию D(U)=\frac{n_1\cdot n_2\cdot (n_1+n_2)}{12} и при достаточно большом объёме выборочных данных (n_1>19,\;n_2>19) распределён практически нормально.

Таблица критических значений[править | править вики-текст]

См. также[править | править вики-текст]

Примечания[править | править вики-текст]

Литература[править | править вики-текст]

  • Mann H. B., Whitney D. R. On a test of whether one of two random variables is stochastically larger than the other. // Annals of Mathematical Statistics. — 1947. — № 18. — P. 50—60.
  • Wilcoxon F. Individual Comparisons by Ranking Methods. // Biometrics Bulletin 1. — 1945. — P. 80-83.
  • Гублер Е. В., Генкин А. А. Применение непараметрических критериев статистики в медико-биологических исследованиях. — Л., 1973.
  • Сидоренко Е. В. Методы математической обработки в психологии. — С-Пб., 2002.