Водородный показатель

Материал из Википедии — свободной энциклопедии
(перенаправлено с «PH»)
Перейти к навигации Перейти к поиску
Лимонный сок; ввиду наличия в нём 5−6 % лимонной кислоты водородный показатель сока 2,2: высокая кислотность

Водоро́дный показа́тель[1] (pH [пэ-аш] ← лат. pondus Hydrogenii[2] «вес водорода») — мера кислотности водных растворов. Является способом выражения активности катионов водорода в растворах. Противоположна по знаку и равна по модулю десятичному логарифму активности (а) катионов водорода (Н+), выраженной в молях на литр, которую в сильно разбавленных растворах можно считать равной их равновесной молярной концентрации ([H+])[3]:

.

Для водных растворов (при стандартных условиях)Перейти к разделу «Значения pH в растворах различной кислотности»:

  • pH < 7 соответствует кисло́тному раствору;
  • pH = 7 соответствует нейтра́льному раствору;
  • pH > 7 соответствует осно́вному раствору.

Водородный показатель может быть определён с помощью кислотно-основных индикаторов, измерен потенциометрическим pH-метром.

Точное измерение и регулирование pH необходимо в различных отраслях химии, биологии, наук о материалах, технологий, медицины и агрономической химии[⇨].

История[править | править код]

Это понятие было введено в 1909 году датским химиком Сёренсеном. Показатель называется pH, по первым буквам латинских слов potentia hydrogenii — сила водорода, или pondus hydrogenii — вес водорода. Вообще в химии сочетанием pX принято обозначать величину, равную −lg X. Например, силу кислот часто выражают в виде pKa = −lg Ka.

В случае pH буква H обозначает концентрацию ионов водорода (H+), или, точнее, термодинамическую активность гидроксоний-ионов.

Уравнения, связывающие pH и pOH[править | править код]

Вывод значения pH[править | править код]

В чистой воде концентрации ионов водорода ([H+]) и гидроксид-ионов ([OH]) одинаковы и при 22 °C составляют по 10−7 моль/л, это напрямую следует из определения ионного произведения воды, которое равно [H+] · [OH] и составляет 10−14 моль22 (при 25 °C).

Когда концентрации обоих видов ионов в растворе одинаковы, говорят, что раствор имеет нейтральную реакцию. При добавлении к воде кислоты концентрация ионов водорода увеличивается (на самом деле увеличивается не концентрация собственно ионов — иначе как способность кислот «присоединять» ион водорода могла бы приводить к этому — а концентрация именно таких соединений с «присоединённым» к кислоте ионом водорода), а концентрация гидроксид-ионов соответственно уменьшается, при добавлении основания — наоборот, повышается содержание гидроксид-ионов, а концентрация ионов водорода падает. Когда [H+] > [OH], говорят, что раствор является кислотным, а при [OH] > [H+] — осно́вным.

Для удобства представления, чтобы избавиться от отрицательного показателя степени, вместо концентрации ионов водорода используют её взятый с обратным знаком десятичный логарифм, который, собственно, и является водородным показателем — pH.

pOH[править | править код]

Несколько меньшее распространение получила обратная pH величина — показатель осно́вности раствора, pOH, равная отрицательному десятичному логарифму концентрации в растворе ионов OH:

Так как в любом водном растворе при 25 °C , очевидно, что при этой температуре:

Значения pH в растворах различной кислотности[править | править код]

Некоторые значения pH[источник не указан 3106 дней]
Вещество pH Цвет индикатора
Геотермальная вода у вулкана Даллол ≈0
Электролит в свинцовых аккумуляторах <1,0
Желудочный сок 1,0–2,0
Лимонный сок (5%-й раствор лимонной кислоты) 2,0±0,3
Пищевой уксус 2,4
Яблочный сок 3,0
Кока-кола 3,0±0,3
Кофе 5,0
Чай, шампунь, кожа здорового человека 5,5
Кислотный дождь, моча <5,6
Питьевая вода 6,5–8,5
Молоко 6,6–6,93
Слюна 6,8–7,4 [4]
Чистая вода при 25 °C 7,0
Кровь 7,36–7,44
Морская вода 8,0
Мыло (жировое) для рук 9,0–10,0
Нашатырный спирт 11,5
Отбеливатель (хлорная известь) 12,5
Концентрированные растворы щелочей >13

Так как при 25 °C (стандартных условиях) [H+] · [OH] = 10−14, то понятно, что при этой температуре pH + pOH = 14.

Так как в кислотных растворах [H+] > 10−7, то у кислотных растворов pH < 7, аналогично, у осно́вных растворов pH > 7, pH нейтральных растворов равен 7. При более высоких температурах константа электролитической диссоциации воды повышается, соответственно увеличивается ионное произведение воды, поэтому нейтральной оказывается pH < 7 (что соответствует одновременно возросшим концентрациям как H+, так и OH); при понижении температуры, напротив, нейтральная pH возрастает.

Связь pKa и pH[править | править код]

 — показатель константы кислотности

Уравнение Гендерсона-Хассельбаха[править | править код]

Методы определения значения pH[править | править код]

Для определения значения pH растворов широко используют несколько методик. Водородный показатель можно приблизительно оценивать с помощью индикаторов, точно измерять pH-метром или определять аналитически путём, проведением кислотно-осно́вного титрования.

  1. Для грубой оценки концентрации водородных ионов широко используются кислотно-осно́вные индикаторы — органические вещества-красители, цвет которых зависит от pH среды. К наиболее известным индикаторам принадлежат лакмус, фенолфталеин, метиловый оранжевый (метилоранж) и другие. Индикаторы способны существовать в двух по-разному окрашенных формах — либо в кислотной, либо в осно́вной. Изменение цвета каждого индикатора происходит в своём интервале кислотности, обычно составляющем 1-2 единицы.
  2. Для расширения рабочего интервала измерения pH используют так называемый универсальный индикатор, представляющий собой смесь из нескольких индикаторов. Универсальный индикатор последовательно меняет цвет с красного через жёлтый, зелёный, синий до фиолетового при переходе из кислотной области в осно́вную. Определения pH индикаторным методом затруднено для мутных или окрашенных растворов.
  3. Использование специального прибора — pH-метра — позволяет измерять pH в более широком диапазоне и более точно, чем с помощью индикаторов. Ионометрический метод определения pH основывается на измерении милливольтметром-ионометром ЭДС гальванической цепи, включающей специальный стеклянный электрод, потенциал которого зависит от концентрации ионов H+ в окружающем растворе. Способ отличается удобством и высокой точностью, особенно после калибровки индикаторного электрода в избранном диапазоне pH, позволяет измерять pH непрозрачных и цветных растворов и потому широко используется.
  4. Аналитический объёмный метод — кислотно-осно́вное титрование — также даёт точные результаты определения кислотности растворов. Раствор известной концентрации (титрант) по каплям добавляется к исследуемому раствору. При их смешивании протекает химическая реакция. Точка эквивалентности — момент, когда титранта точно хватает, чтобы полностью завершить реакцию, — фиксируется с помощью индикатора. Далее, зная концентрацию и объём добавленного раствора титранта, вычисляется кислотность раствора.
  5. При отсутствии инструментальных средств определения рН могут быть использованы водные экстракты антоцианов — пигментов растений, окрашивающих цветки, плоды, листья, стебли. Основа их строения — катион флавилия, у которого кислород в пирановом кольце свободновалентен. Например, цианидин имеет красновато-фиолетовый цвет, однако цвет меняется с изменением рН: растворы имеют красный цвет при рН<3, фиолетовый при рН 7-8 и голубой при рН>11. Обычно в кислоте антоцианы имеют красный цвет различной интенсивности и оттенков, а в щелочной — синий. Такие изменения в окраске антоцианов можно наблюдать, добавляя кислоту или щелочь к окрашенному соку смородины, вишни, столовой свёклы или краснокочанной капусты[5].

Влияние температуры на значения pH[править | править код]

Влияние температуры на значения pH объясняется различной диссоциацией ионов водорода (H+) и не является ошибкой эксперимента. Температурный эффект невозможно компенсировать за счет электроники pH-метра.

Роль pH в химии и биологии[править | править код]

Кислотность среды имеет важное значение для множества химических процессов, и возможность протекания или результат той или иной реакции часто зависит от pH среды. Для поддержания определённого значения pH в реакционной системе при проведении лабораторных исследований или на производстве применяют буферные растворы, которые позволяют сохранять практически постоянное значение pH при разбавлении или при добавлении в раствор небольших количеств кислоты или щёлочи.

Водородный показатель pH широко используется для характеристики кислотно-осно́вных свойств различных биологических сред.

Кислотность реакционной среды особое значение имеет для биохимических реакций, протекающих в живых системах. Концентрация в растворе ионов водорода часто оказывает влияние на физико-химические свойства и биологическую активность белков и нуклеиновых кислот, поэтому для нормального функционирования организма поддержание кислотно-осно́вного гомеостаза является задачей исключительной важности. Динамическое поддержание оптимального pH биологических жидкостей достигается благодаря действию буферных систем организма.

В человеческом организме в различных органах водородный показатель различен. Нормальный pH крови составляет 7,36, то есть кровь имеет слабоосновную реакцию (с колебаниями от 7,34 у венозной крови до 7,40 у артериальной). В зависимости от биохимических изменений в крови может наблюдаться ацидоз (увеличение кислотности) или алкалоз (увеличение осно́вности), однако совместимый с жизнью диапазон pH крови невелик, поскольку уже при уменьшении pH до 6,95 наступает потеря сознания, а смещение реакции крови в щелочную сторону до pH = 7,7 вызывает тяжелейшие судороги. Поддержание кислотно-основного баланса крови в допустимых пределах осуществляется буферными системами крови, главной из которых является гемоглобиновая[6]. Нормальный водородный показатель желудочного сока (в просвете тела желудка натощак) равен 1,5…2,0[7]. У сока тонкой кишки pH в норме составляет 7,2…7,5, при усилении секреции достигает 8,6[8]. pH содержимого толстого кишечника может варьировать в норме от 6,0 до 7,2 единиц и зависит прежде всего от уровня продукции жирных кислот его микробиотой[9].

Примечания[править | править код]

  1. Химическая энциклопедия / Редкол.: Кнунянц И.Л. и др.. — М.: Советская энциклопедия, 1988. — Т. 1 (Абл-Дар). — 623 с.
  2. история термина спорна
  3. The International Union of Pure and Applied Chemistry (IUPAC). IUPAC - pH (P04524). goldbook.iupac.org. Дата обращения: 20 марта 2023. Архивировано 1 апреля 2023 года.
  4. Кислотность (pH) // Функциональная гастроэнтерология : сайт. Архивировано 9 мая 2013 года.
  5. Л.А.Красильникова. Биохимия растений. — 2004. — С. 163—164.
  6. Физиология человека. Под редакцией В. М. Покровского, Г. Ф. Коротько. Физико-химические свойства крови. Архивная копия от 15 августа 2019 на Wayback Machine
  7. Физиология человека. Под редакцией В. М. Покровского, Г. Ф. Коротько. Секреторная функция желудка Архивная копия от 15 августа 2019 на Wayback Machine
  8. Физиология человека. Под редакцией В. М. Покровского, Г. Ф. Коротько. Кишечная секреция Архивная копия от 13 августа 2019 на Wayback Machine.
  9. Akinori Osuka, Kentaro Shimizu, Hiroshi Ogura, Osamu Tasaki, Toshimitsu Hamasaki. Prognostic impact of fecal pH in critically ill patients // Critical Care. — 2012. — Т. 16, вып. 4. — С. R119. — ISSN 1364-8535. — doi:10.1186/cc11413. Архивировано 11 февраля 2021 года.

Литература[править | править код]

Ссылки[править | править код]