Равнобедренный треугольник

Материал из Википедии — свободной энциклопедии
Перейти к навигации Перейти к поиску
Равнобедренный треугольник

Равнобедренный треугольниктреугольник, в котором две стороны имеют равную длину. Боковыми называются равные стороны, а третья сторона — основанием. Каждый правильный треугольник также является равнобедренным, но обратное утверждение неверно[1].

Терминология[править | править код]

Угол, образованный боковыми сторонами, называется вершинным углом, а углы, одной из сторон которых является основание, называются углами при основании[1].

Евклид определил равнобедренный треугольник как треугольник, который имеет две равные стороны, но современная трактовка[2] предпочитает определение, где треугольник имеет хотя бы две равные стороны, определяя таким образом равносторонний треугольник как частный случай равнобедренного.

Симметрия[править | править код]

Треугольник с двумя равными сторонами имеет одну ось симметрии, которая проходит через вершинный угол и середину основания. Эта ось симметрии совпадает с биссектрисой вершинного угла, медианой, проведённой к основанию, высотой, проведённой из вершинного угла и с серединным перпендикуляром[3][уточнить].

Свойства[править | править код]

Свойства равнобедренного треугольника

В равнобедренном треугольнике углы при основании равны. Также равны биссектрисы, медианы и высоты, проведённые из этих углов.

Биссектриса, медиана, высота и серединный перпендикуляр, проведённые к основанию, совпадают между собой. Центры вписанной и описанной окружностей лежат на этой линии.

Пусть a — длина равных боковых сторон, b — длина основания, h — высота к основанию, R — радиус описанной окружности

  • (следствие теоремы косинусов);
  • ;
  • (следствие теоремы косинусов);
  • ;
  • (теорема о проекциях);

Радиус вписанной окружности может быть выражен пятью способами в зависимости от того, какие два параметра равнобедренного треугольника известны:

Углы могут быть выражены следующими способами:

  • (теорема синусов).
  • Угол также может быть найден без и . Треугольник делится медианой пополам, и в полученных двух равных прямоугольных треугольниках вычисляются углы :

Периметр равнобедренного треугольника находится следующими способами:

  • (по определению);
  • (следствие теоремы синусов).

Площадь треугольника находится следующими способами:

Теорема Лемуса-Штейнера[править | править код]

Если две биссектрисы треугольника равны, то этот треугольник — равнобедренный.


Лемус, Штейнер, XIX в.

Доказан этот признак равнобедренного треугольника был только в XIX веке двумя математиками, Лемусом и Штейнером, которые обменивались письмами в течение нескольких лет.

См. также[править | править код]

Примечания[править | править код]

  1. 1 2 3 Справочник по элементарной математике, 1978, с. 218—240.
  2. Stahl 2003, стр. 37.
  3. Ostermann & Wanner. . — 2012. — С. 55, упражнение 7.
  4. Шахмейстер А. Х. Треугольники и параллелограммы // Геометрические задачи на экзаменах. Часть 1. Планиметрия : [арх. 20 февраля 2023] : книга / А. Х. Шахмейстер. — СПб. : «Петроглиф» : «Виктория плюс» ; М. : Издательство МЦНМО, 2015. — С. 147. — 392 с. : илл. — (Математика. Элективные курсы). — 1500 экз. — ББК 22.141я71.6. — УДК 373.167.1:512(G). — ISBN 978-5-98712-083-5. — ISBN 978-5-91673-155-2. — ISBN 978-5-4439-0347-7.

Литература[править | править код]

  • Выгодский М. Я. Справочник по элементарной математике. — 25-е изд. — М.: Наука, 1978. — 336 с.