Эльбор

Материал из Википедии — свободной энциклопедии
Перейти к навигации Перейти к поиску

Эльбо́р (Ленинград + бор), боразо́н (от бор + азот), кубони́т, цингсонги́т[en][1][2], киборит — торговые марки сверхтвердых материалов на основе кубической β-модификации (сфалеритной) нитрида бора, или кубического нитрида бора (советская аббревиатура — КНБ, зарубежная — cBN). По твёрдости и другим свойствам приближается к алмазу (10 по шкале Мооса).

Химическая формула — BN.

Свойства материала Эльбор[править | править код]

Материал Микротвердость, ×10² МПа Температурная устойчивость, °C
Алмаз 1000 650—700
Эльбор 800—900 1100—1300
Карбид кремния 300—320 1200—1300
Электрокорунд 180—220 1500—1700

Внешний вид[править | править код]

Цвет КНБ может быть от практически белого (бесцветного) до чёрного. Жёлтые, сильно преломляющие свет прозрачные кристаллы, с хорошей игрой света, естественная форма — октаэдрическая. Кристаллы подобного вида марки ЛКВ60 и В5 синтезируются, например, в системе Li-B-N. Для КНБ торговой марки эльбор ЛКВ40, ЛКВ50, синтезированных в системе Mg-B-N, характерным является чёрно-коричневый цвет из-за избытка бора в кристаллической решётке. Естественная форма совершенных кристаллов — тетраэдр. Октаэдры (псевдооктаэдры) получаются в результате двойникования тетраэдров.

Твёрдость[править | править код]

По твёрдости почти не уступает алмазу. Его высокая твёрдость, в 3—4 раза превосходящая твёрдость традиционных абразивов, является важным преимуществом, так как значительно уменьшает износ зёрен эльбора при шлифовании и длительное время сохраняет их остроту.

Термическая и химическая стойкость[править | править код]

Другим важным свойством и преимуществом эльбора является температурная устойчивость: заметное окисление поверхности зёрен эльбора начинается с 1000—1200 °C, в отличие от 600—700 °C у алмаза. Такие температуры при шлифовании являются мгновенными и возникают только при очень жёстких режимах шлифования. Поэтому зёрна эльбора очень мало изнашиваются от термических нагрузок.

Важным свойством и преимуществом эльбора является его высокая химическая стойкость. Эльбор не реагирует с кислотами и щелочами, инертен практически ко всем химическим элементам, входящим в состав сталей и сплавов. Особенно следует отметить инертность эльбора к железу, являющемуся основой всех сталей, тогда как алмаз хорошо растворяется в железе, что является причиной интенсивного износа алмазных кругов при шлифовании сталей.

Получение[править | править код]

Гексагональный нитрид бора (графитоподобная модификация) получается нагреванием равных количеств бора и азота при температуре 1700—1800 °C и давлении 8—12 ГПа. КНБ получают из него нагреванием при высоких давлениях и температурах в присутствии различных растворителей-катализаторов.

Применение[править | править код]

Применяется в промышленности в шлифовальном инструменте при обработке различных сталей и сплавов. Эльбор как абразивный материал обладает следующими преимуществами при шлифовании:

  • Длительно сохраняет остроту зёрен (высокая износостойкость), что обусловливает высокую режущую способность и стойкость кругов.
  • Выдерживает высокие термические нагрузки, что позволяет интенсифицировать режимы шлифования, если допускает обрабатываемый материал.
  • Позволяет шлифовать сложнолегированные стали и сплавы без адгезионного и диффузного износа зёрен эльбора.
  • Круги на основе эльбора применяют при шлифовании деталей из различных сталей: подшипниковых, штамповых, инструментальных, сложнолегированных, азотированных и цементированных. Особенно эффективны эльборовые круги при шлифовании быстрорежущих сталей, содержащих вольфрам, ванадий, молибден, кобальт в виде соединений высокой твердости, в ряде случаев превосходящей твердость традиционного абразивного материала — электрокорунда.

Использование шлифовальных кругов из эльбора по сравнению с прочими абразивными, в том числе алмазными, способствует значительному повышению производительности, точности и качества обработанных поверхностей деталей на разных операциях шлифования.

История[править | править код]

Кубический нитрид бора был впервые получен в 1957 году Робертом Венторфом (Robert H. Wentorf Jr.) для компании General Electric. В 1969 году компания зарегистрировала торговую марку «Боразон» для кристалла.

В СССР кубический нитрид бора был впервые синтезирован в 1960 г. в Институте физики высоких давлений Академии наук под руководством академика Л. Ф. Верещагина и получил название эльбор (Ленинградский боразон). С 1965 года эльбор синтезировался в промышленных масштабах по технологии Абразивного завода «Ильич» (Санкт-Петербург).

Упоминание в художественной литературе[править | править код]

Кубический нитрид бора под названием «Боразон» упоминается в романе Ивана Ефремова «Туманность Андромеды». В романе неоднократно говорится, что на звездолёте «Тантра» используются боразоновые цилиндры, боразоно-циркониевый лак. Интересен тот факт, что первое издание романа с упоминанием материала и сообщение о синтезе этого материала были опубликованы в одном и том же 1957 году.[значимость факта?]

Упоминание в кинофильмах[править | править код]

Боразон в качестве материала «намного прочнее алмаза» упоминается в обеих версиях фильма «Куотермасс и колодец». Боразоновое сверло было использовано с целью пробить внутреннюю часть марсианского космического корабля, где впоследствии были обнаружены трупы марсиан.

Примечания[править | править код]

  1. Новый минерал: Кубонит из недр Земли. Популярная механика (3 августа 2013). — «Международная минералогическая ассоциация (IMA) на прошедшей неделе официально подтвердила открытие, сделанное международной группой ученых еще в 2009 году: существует природная кубическая модификация нитрида бора, получившая название «кингсонгит» (qingsongite).» Дата обращения: 4 августа 2013. Архивировано 5 августа 2013 года.
  2. Iqbal Pittalwala. International Research Team Discovers New Mineral (англ.). University of California (2 августа 2013). Дата обращения: 4 августа 2013. Архивировано из оригинала 6 августа 2013 года.

Литература[править | править код]

  • Кремень З. И., Юрьев В. Г., Бабошкин А. Ф. Технология шлифования в машиностроении Архивная копия от 17 ноября 2009 на Wayback Machine.
  • Эльбор в машиностроении. Под ред. В. С. Лисанова. — Л.: «Машиностроение», 1978.
  • Дигонский С.В. Газофазные процессы синтеза и спекания тугоплавких веществ. – Москва, ГЕОС, 2013 г, 462 с.
  • Дигонский С.В. Некоторые сведения из истории синтеза кубического нитрида бора для лезвийного режущего инструмента (Часть 1). – Альтернативная энергетика и экология, 2014, № 9, с. 49–57.