Тепловой насос

Материал из Википедии — свободной энциклопедии
Это старая версия этой страницы, сохранённая 195.177.122.39 (обсуждение) в 11:28, 12 мая 2010 (→‎Эффективность). Она может серьёзно отличаться от текущей версии.
Перейти к навигации Перейти к поиску
Схема компрессионного теплового насоса 1) конденсатор, 2) дроссель, 3) испаритель, 4) компрессор.

Тепловой насос — устройство для переноса тепловой энергии от источника низкопотенциальной тепловой энергии (с низкой температурой) к потребителю (теплоносителю) с более высокой температурой,[1]. Термодинамически тепловой насос представляет собой обращённую холодильную машину. Если в холодильной машине основной целью является производство холода путём отбора теплоты из какого-либо объёма испарителем, а конденсатор осуществляет сброс теплоты в окружающую среду, то в тепловом насосе картина обратная. Конденсатор является теплообменным аппаратом, выделяющим теплоту для потребителя, а испаритель - теплообменным аппаратом, утилизирующим низкопотенциальную теплоту: вторичные энергетические ресурсы и (или) нетрадиционные возобновляемые источники энергии.

Общие положения

Основу эксплуатируемого сегодня в мире парка теплонасосного оборудования составляют парокомпрессионные тепловые насосы, но применяются также и абсорбционные, электрохимические и термоэлектрические. Эффективность тепловых насосов принято характеризовать величиной безразмерного коэффициента трансформации энергии К тр, определяемого для идеального цикла Карно по следующей формуле:


где  — температуры соответственно на выходе и на входе насоса.

где: То-температурный потенциал тепла, отводимого в систему отопления или теплоснабжения, К; Тi -температурный потенциал источника тепла , К. Коэффициент трансформации теплового насоса, или теплонасосной системы теплоснабжения (ТСТ) К тр представляет собой отношение полезного тепла, отводимого в систему теплоснабжения потребителю, к энергии, затрачиваемой на работу теплонасосной системы теплоснабжения (ТСТ) теплонасосная система, и численно равен количеству полезного тепла, получаемого при температурах То и Ти, на единицу энергии, затраченной на привод ТН или ТСТ. Реальный коэффициент трансформации отличается от идеального, описанного формулой (1 1), на величину коэффициента h, учитывающего степень термодинамического совершенства ГТСТ и необратимые потери энергии при реализации цикла. В [2] приведены зависимости реального и идеального коэффициентов трансформации (К тр) теплонасосной системы теплоснабжения от температуры источника тепла низкого потенциала Ти и температурного потенциала тепла, отводимого в систему отопления То. При построении зависимостей, степень термодинамического совершенства ТСТ h была принята равной 0,55, а температурный напор (разница температур хладона и теплоносителя) в конденсаторе и в испарителе тепловых насосов был равен 7°С. Эти значения степени термодинамического совершенства h и температурного напора между хладоном и теплоносителями системы отопления и теплосбора представляются близкими к действительности с точки зрения учета реальных параметров теплообменной аппаратуры (конденсатор и испаритель) тепловых насосов, а также сопутствующих затрат электрической энергии на привод циркуляционных насосов, систем автоматизации, запорной и управляющей арматуры. В общем случае степень термодинамического совершенства теплонасосных систем теплоснабжения h зависит от многих параметров, таких, как: мощность компрессора, качество производства комплектующих теплового насоса и необратимых энергетических потерь, которые, в свою очередь, включают: — потери тепловой энергии в соединительных трубопроводах; — потери на преодоление трения в компрессоре; — потери, связанные с неидеальностью тепловых процессов, протекающих в испарителе и конденсаторе, а также с неидеальностью теплофизических характеристик хладонов; — механические и электрические потери в двигателях и прочее. В табл.1-1 представлены «средние» значения степени термодинамического совершенства h для некоторых типов компрессоров, используемых в современных теплонасосных системах теплоснабжения.

Таблица 1 1 Эффективность некоторых типов компрессоров, используемых в современных теплонасосных системах теплоснабжения

Мощность, кВт Тип компрессора Эффективность (степень термодинамического совершенства) h , доли ед.
300−3000 Открытый центробежный 0,55-0,75
50-500 Открытый поршневой 0,5-0,65
20-50 Полугерметичный 0,45-0,55
2-25 Герметичный, с R-22 0,35-0,5
0,5-3,0 Герметичный, с R-12 0,2-0,35
<0,5 Герметичный <0,25


Термодинамически тепловой насос представляет собой обращённую холодильную машину и, по аналогии, содержит испаритель, конденсатор и контур, осуществляющий термодинамический цикл. Основные типы термодинамических циклов - абсорбционный и, наиболее распространённый, парокомпрессионный, но существуют и другие типы тепловых насосов:термоэлектрические, электрохимичесие и др. Если в холодильной машине основной целью является производство холода путём отбора теплоты из какого-либо объёма испарителем, а конденсатор осуществляет сброс теплоты в окружающую среду, то в тепловом насосе картина обратная. Конденсатор является теплообменным аппаратом, выделяющим теплоту для потребителя, а испаритель - теплообменным аппаратом, утилизирующим низкопотенциальную теплоту: вторичные энергетические ресурсы и (или) нетрадиционные возобновляемые источники энергии Руководство по применению тепловых насосов с использованием вторичных энергетических ресурсов и нетрадиционных возобновляемых источников энергии.

Как и холодильная машина, тепловой насос потребляет энергию на реализацию термодинамического цикла (привод компрессора). Коэффициент преобразования теплового насоса - отношение теплопроизводительности к электропотреблению - зависит от уровня температур в испарителе и конденсаторе и колеблется в различных системах в диапазоне от 2,5 до 5, т.е. на 1 кВт затраченной электрической энергии тепловой насос производит от 2,5 до 5 кВт тепловой энергии. Температурный уровень теплоснабжения от тепловых насосов 35 - 55 °С. Экономия энергетических ресурсов достигает 70% [3]. Промышленность технически развитых стран выпускает широкий ассортимент парокомпрессионных тепловых насосов тепловой мощностью от 5 до 1000 кВт.

Эффективность

В процессе работы компрессор потребляет электроэнергию. Соотношение вырабатываемой тепловой энергии и потребляемой электрической называется коэффициентом трансформации (или коэффициентом преобразования теплоты) и служит показателем эффективности теплового насоса. Эта величина зависит от разности уровня температур в испарителе и конденсаторе: чем больше разность, тем меньше эта величина.

По этой причине тепловой насос должен использовать по возможности большее количество источника низкопотенциального тепла, не стремясь добиться его сильного охлаждения. В самом деле, при этом растёт эффективность теплового насоса, поскольку при слабом охлаждении источника тепла не происходит значительного роста разницы температур. По этой причине тепловые насосы делают так, чтобы масса низкотемпературного источника тепла была значительно большей, чем нагреваемая масса.

Отличие теплового насоса от топливных источников тепла состоит в том, что для работы, кроме энергии для компрессора, ему нужен также источник низкопотенциального тепла, в то время как в традиционных источниках тепла вырабатываемое тепло зависит исключительно от теплотворной способности топлива.

Проблема привязки теплового насоса к источнику низкопотенциального тепла, имеющего большую массу может быть решена[источник не указан 4191 день] введением в тепловой насос системы массопереноса, например, системы прокачки воды. Так устроена система центрального отопления Стокгольма.

Условный КПД тепловых насосов

Теоретически применение тепловых насосов для обогрева помещений эффективнее газовых котлов. Современные парогазотурбинные установки на электростанциях имеют КПД, незначительно меньший КПД газовых котлов.[источник не указан 4006 дней] В результате при переходе электроэнергетики на современное оборудование и при применении тепловых насосов можно получить экономию газа до 3-5 раз в сравнении с газовыми котлами.[4]. В действительности приходится учитывать накладные расходы по передаче, преобразованию и распределению электроэнергии (т.е. услуги энергосетей). В результате отпускная цена электричества в 3-5 раз превышает его себестоимость, что сводит на нет применение в общем то прогрессивной технологии. В связи с этим, целесообразно или использовать электричество от альтернативных источников (волновые, ветровые, солнечные электростанции), или комбинировать генерацию электричества из газа с использованием его здесь же, на месте, для получения тепла в тепловом насосе.

Виды тепловых насосов и источники энергии

По виду теплоносителя во входном и выходном контурах насосы делят на шесть типов: «грунт—вода», «вода—вода», «воздух—вода», «грунт—воздух», «вода—воздух», «воздух—воздух».

Эффективность и выбор определённого источника тепловой энергии зависит от климатических условий.

Практические рекомендации

При использовании в качестве источника тепла энергии грунта трубопровод, в котором циркулирует антифриз, зарывают в землю на 30-50 см ниже уровня промерзания грунта в данном регионе. Минимальное рекомендуемое[кем?] расстояние между трубами коллектора — 0,8-1 м.

Специальной подготовки почвы не требуется. Но желательно использовать участок с влажным грунтом, если же он сухой, контур надо сделать длиннее. Ориентировочное значение тепловой мощности, приходящейся на 1 м трубопровода, 20-30 Вт. Таким образом, для установки теплового насоса производительностью 10 кВт необходим земляной контур длиной 350—450 м, для укладки которого потребуется участок земли площадью около 400 м² (20х20 м). При правильном расчёте контур не влияет на зелёные насаждения.[источник не указан 4191 день]

Если свободного участка для прокладки коллектора нет или в качестве источника тепла используется скалистая порода, трубопровод опускается в скважину. Не обязательно использовать одну глубокую скважину, можно пробурить несколько неглубоких, более дешёвых, чтобы получить общую расчётную глубину. Иногда в качестве скважин используют фундаментные сваи.

Ориентировочно на 1 погонный метр скважины приходится 50-60 Вт тепловой энергии.[источник не указан 4191 день] Таким образом, для установки теплового насоса производительностью 10 кВт необходима скважина глубиной 170 м.[источник не указан 4006 дней]


Хладагент подаётся непосредственно к источнику земного тепла, что обеспечивает высокую эффективность геотермальной отопительной системы. Испаритель устанавливают в грунт горизонтально ниже глубины промерзания или в скважины диаметром 40-60 мм пробуренные вертикально либо под уклоном до глубины 15-30 м. Благодаря такому инженерному решению устройство теплообменного контура производится на площади всего несколько квадратных метров, не требует установки промежуточного теплообменника и дополнительных затрат на работу циркуляционного насоса.

При использовании в качестве источника тепла близлежащего водоёма контур укладывается на дно. Этот вариант принято считать идеальным: не слишком длинный внешний контур, «высокая» температура окружающей среды (температура воды в водоёме зимой всегда положительная), высокий коэффициент преобразования энергии тепловым насосом.

Ориентировочное значение тепловой мощности на 1 м трубопровода — 30 Вт. Таким образом, для установки теплового насоса производительностью 10 кВт необходимо уложить в озеро контур длиной 300 м. Чтобы трубопровод не всплывал, на 1 пог. м устанавливается около 5 кг груза.

Для получения тепла из тёплого воздуха (например, из вытяжки системы вентиляции) используется специальная модель теплового насоса с воздушным теплообменником. Тепло из воздуха для системы отопления и горячего водоснабжения также можно собирать на производственных предприятиях.

Если тепла из внешнего контура всё же недостаточно для отопления в сильные морозы, практикуется эксплуатация насоса в паре с дополнительным генератором тепла (в таких случаях говорят об использовании бивалентной схемы отопления). Когда уличная температура опускается ниже расчётного уровня (температуры бивалентности), в работу включается второй генератор тепла — чаще всего небольшой электронагреватель.

Преимущества и недостатки

К преимуществам тепловых насосов в первую очередь следует отнести экономичность: для передачи в систему отопления 1 кВт·ч тепловой энергии установке необходимо затратить всего 0,2-0,35 кВт·ч электроэнергии. Так как преобразование тепловой энергии в электрическую на крупных электростанциях происходит с кпд до 50%, эффективность использования топлива при применении тепловых насосов повышается. Упрощаются требования к системам вентиляции помещений и повышается уровень пожарной безопасности. Все системы функционируют с использованием замкнутых контуров и практически не требуют эксплуатационных затрат, кроме стоимости электроэнергии, необходимой для работы оборудования.

Еще одним преимуществом тепловых насосов является возможность переключения с режима отопления зимой на режим кондиционирования летом: просто вместо радиаторов к внешнему коллектору подключаются фэн-койлы.

Тепловой насос надежен, его работой управляет автоматика. В процессе эксплуатации система не нуждается в специальном обслуживании, возможные манипуляции не требуют особых навыков и описаны в инструкции.

Важной особенностью системы является ее сугубо индивидуальный характер для каждого потребителя, который заключается в оптимальном выборе стабильного источника низкопотенциальной энергии, расчете коэффициента преобразования, окупаемости и прочего.

Теплонасос компактен (его модуль по размерам не превышает обычный холодильник) и практически бесшумен.

Хотя идея, высказанная лордом Кельвином в 1852 году, была реализована уже спустя четыре года, практическое применение теплонасосы получили только в 30-х годах прошлого века. В западных странах тепловые насосы применяются давно — и в быту, и в промышленности. Сегодня в Японии, например, эксплуатируется около 3 миллионов установок, в Швеции около 500 000 домов обогревается тепловыми насосами различных типов.

К недостаткам тепловых насосов, используемых для отопления, следует отнести большую стоимость установленного оборудования.

Перспективы

Для организации теплового насоса необходимы высокие первоначальные затраты: стоимость насоса и монтажа системы составляет $300-1200 на 1 кВт необходимой мощности отопления. Время окупаемости теплонасосов составляет[5] 4-9 лет, при сроке службы по 15-20 лет до капитального ремонта.

Существует и альтернативный взгляд на экономическую целесообразность установки теплонасосов. Так если установка теплонасоса производится на средства взятые в кредит, экономия от использования теплонасоса может быть меньше, чем стоимость использования кредита. Поэтому массовое использования теплонасосов в частном секторе можно ожидать если стоимость теплонасосного оборудования будет сопоставима с затратами на установку газового отопления и подключения к газовой сети.

Ещё более многообещающей является система, комбинирующая в единую систему теплоснабжения геотермальный источник и тепловой насос. При этом геотермальный источник может быть как естественного (выход геотермальных вод), так и искусственного происхождения (скважина с закачкой холодной воды в глубокий слой и выходом на поверхность нагретой воды).

Другим возможным применением теплового насоса может стать его комбинирование с существующими системами централизованного теплоснабжения. К потребителю в этом случае может подаваться относительно холодная вода, тепло которой преобразуется тепловым насосом в тепло с потенциалом, достаточным для отопления. Но при этом вследствие меньшей температуры теплоносителя потери на пути к потребителю (пропорциональные разности температуры теплоносителя и окружающей среды) могут быть значительно уменьшены. Также будет уменьшен износ труб центрального отопления, поскольку холодная вода обладает меньшей коррозионной активностью, чем горячая.

Ограничения применимости тепловых насосов

Основным недостатком теплового насоса является обратная зависимость его эффективности от перепада температур между источником теплоты и потребителем. Это накладывает определенные ограничения на использование систем типа "воздух - вода". Реальные значения эффективности современных тепловых насосов составляют порядка СОР=2.0 при температуре источника -20°С, и порядка СОР=4.0 при температуре источника +7°С. Это приводит к тому, что для обеспечения заданного температурного режима потребителя при низких температурах воздуха необходимо использовать оборудование со значительной избыточной мощностью, что сопряжено с нерациональным использованием капиталовложений (впрочем, это касается и любых других источников тепловой энергии). Решением этой проблемы является применение так называемой амбивалентной схемы отопления, при которой основную (базовую) нагрузку несет тепловой насос, а пиковые нагрузки покрываются вспомогательным источником (газовый или электрокотел). Оптимальная мощность теплонасосной установки составляет 60...70% от необходимой установленной мощности. В этом случае тепловой насос обеспечивает не менее 95% потребности потребителя в тепловой энергии за весь отопительный сезон. При такой схеме среднесезонный коэффициент преобразования энергии для климатических условий Центральной Европы равен порядка СОР=3. Коэффициент использования первичного топлива для такой системы легко определить, исходя из того, что КПД тепловых электростанций составляет от 40% (тепловые электростанции конденсационного типа) до 55% (парогазовые электростанции). Соответственно, для рассматриваемой теплонасосной установки коэффициент использования первичного топлива лежит в пределах 120%...165%, что в 2...3 раза выше, чем соответствующие эксплуатационные характеристики газовых котлов (65%) или систем центрального отопления (50...60%). Понятно, что системы, использующие геотремальный источник теплоты или теплоту грунтовых вод, свободны от этого недостатка. Следствием этого же недостатка является необходимость использования низкотемпературных систем отопления (системы поверхностного нагрева типа "теплый пол", воздушные системы отопления с применением фенкойлов и т.п.). Однако это ограничение касается только устаревших радиаторных систем отопления, практически не находящих применения в современных технологиях строительства.

Основные схемы отопления с применением тепловых насосов

Индивидуальное отопление (отопление квартир)

Наиболее простой вариант — использование моноблочных модулей «воздух-вода» . К примеру, отопление и горячее водоснабжение двухкомнатной квартиры площадью 60 кв.м. может вполне обеспечить модуль номинальной мощностью 5.5 кВт.[источник не указан 4006 дней] Для южных регионов Украины такой модуль обеспечит среднесезонный отопительный коэффициент[неизвестный термин] порядка 2.75.

Кроме того, потребитель[стиль] дополнительно получает бесплатную систему кондиционирования, которая обеспечит его и бесплатной[источник не указан 4006 дней] горячей водой в летнее время. Ещё более эффективным[источник не указан 4006 дней] станет применение системы индивидуального отопления с помощью ТН в случае введения тарифов централизованного теплоснабжения, дифференцированных по температуре теплоносителя. Использование ТН для догрева теплоносителей до нужной температуры позволит снизить стоимость единицы потребляемой тепловой энергии в 6-8 раз по сравнению с централизованными системами теплоснабжения.[источник не указан 4191 день]

Стандартные объекты обогрева

  • Бассейны
  • Дачи, коттеджи
  • Квартиры
  • Гостиницы, рестораны
  • Коттеджные городки
  • Офисно-торговые центры
  • Производственные помещения

См. также

Примечания

  1. http://slovari.yandex.ru/dict/bse/article/00078/47100.htm
  2. Васильев Г.П. Теплохладоснабжение зданий и сооружений с использованием низкопотенциальной тепловой энергии поверхностных слоев Земли (Монография). Издательский дом «Граница». М., «Красная звезда» – 2006. – 220 С.
  3. Васильев Г.П., Хрустачев Л.В., Розин А.Г., Абуев И.М. и др. Руководство по применению тепловых насосов с использованием вторичных энергетических ресурсов и нетрадиционных возобновляемых источников энергии // Правительство Москвы Москомархитектура, ГУП «НИАЦ», 2001. – 66 С.
  4. Открытый урок по физике.
  5. Ответы на вопросы по экономичности теплового насоса