Аннуитет

Материал из Википедии — свободной энциклопедии
Перейти к: навигация, поиск

Аннуите́т (фр. annuité от лат. annuus — годовой, ежегодный) или финансовая рента — общий термин, описывающий график погашения финансового инструмента (выплаты вознаграждения или уплаты части основного долга и процентов по нему), когда выплаты устанавливаются периодически равными суммами через равные промежутки времени. Аннуитетный график отличается от такого графика погашения, при котором выплата всей причитающейся суммы происходит в конце срока действия инструмента, или графика, при котором на периодической основе выплачиваются только проценты, а вся сумма основного долга подлежит к оплате в конце.

Сумма аннуитетного платежа включает в себя основной долг и вознаграждение.

В широком смысле, аннуитетом может называться как сам финансовый инструмент, так и сумма периодического платежа, вид графика погашения финансового инструмента или другие производные понятия, оттенки значения. Аннуитетом, например, является:

  • Один из видов срочного государственного займа, по которому ежегодно выплачиваются проценты, и погашается часть суммы.
  • Равные друг другу денежные платежи, выплачиваемые через определённые промежутки времени в счёт погашения полученного кредита, займа и процентов по нему.
  • В страховании жизни — договор со страховой компанией, по которому физическое лицо приобретает право на регулярное получение согласованных сумм, начиная с определённого времени, например, выхода на пенсию[1].
  • Современная стоимость серии регулярных страховых выплат, производимых с определенной периодичностью в течение срока, установленного договором страхования.

Аннуитетный график также может использоваться для того, чтобы накопить определённую сумму к заданному моменту времени, внося равновеликие вклады на счёт или депозит, по которому начисляется вознаграждение.

Виды аннуитетов[править | править код]

По времени выплаты первого аннуитетного платежа различают:

  • аннуитет постнумерандо — выплата осуществляется в конце первого периода,
  • аннуитет пренумерандо — выплата осуществляется в начале первого периода.

Коэффициент аннуитета[править | править код]

Коэффициент аннуитета превращает разовый платёж сегодня в платёжный ряд. С помощью данного коэффициента определяется величина периодических равных выплат по кредиту:

,

где  — процентная ставка за один период,  — количество периодов на протяжении всего действия аннуитета (количество операций по капитализации процентов). На практике возможны некоторые отличия от математического расчёта, вызванные округлением, а также неодинаковой продолжительностью месяца и года; особенно это касается последнего по сроку платежа.

Предполагается, что выплаты производятся постнумерандо, то есть в конце каждого периода. И тогда величина периодической выплаты , где  — величина кредита.

Пример расчёта. Рассчитаем ежемесячную выплату по трехлетнему кредиту суммой 12000 долларов по ставке 6 % годовых. Поскольку выплаты будут производиться каждый месяц, необходимо привести процентную ставку из годового значения к месячному:

.

Подставляем в указанную выше формулу следующие значения: , . Полученный коэффициент умножаем на сумму кредита — 12000. Получаем около 364 долларов 20 центов в месяц.

Обычно погашение долга предусматривает ежемесячные или ежеквартальные выплаты, и задаётся годовая процентная ставка . Если выплаты производятся постнумерандо раз в год в течение лет, то точная формула для коэффициента аннуитета:

или по упрощенной формуле:

,

где (всегда показатель степени) — количество периодов = .

Представленная здесь формула коэффициента аннуитета основана на определении наращенной суммы долга с использованием формулы сложных процентов. Существует формула коэффициента аннуитета, основанная на определении наращенной суммы долга по формуле простых процентов. Кардинальное отличие простых процентов в отсутствии промежуточной капитализации процентов, поэтому при расчёте простыми процентами сначала производится выплата основного долга, а после того, как весь долг выплачен, начинается выплата (капитализация) процентов.

Сначала производится расчёт

Затем

Где n -количество месяцев кредита,

y — годовая процентная ставка
p =  — месячная процентная ставка
K — размер кредита
m — количество месяцев выплаты основного долга
[m] — целое число от m
X — ежемесячный аннуитетный платеж


Пример. n=12,y=120 %=1.2,p=10 %=0.1,K=100000,

тогда [m]=8, m=8.21052631578947

X=12179.49

Месяц Платеж Погашение
основного
долга
Погашение
процентов
Основной
долг
Начисление
процентов
Накопленные
проценты
0                   100 000,00
1 12 179,49 12 179,49      0,00  87 820,51 10 000,00 10 000,00
2 12 179,49 12 179,49      0,00  75 641,03   8782,05 18 782,05
3 12 179,49 12 179,49      0,00  63 461,54   7564,10 26 346,15
4 12 179,49 12 179,49      0,00  51 282,05   6346,15 32 692,31
5 12 179,49 12 179,49      0,00  39 102,56   5128,21 37 820,51
6 12 179,49 12 179,49      0,00  26 923,08   3910,26 41 730,77
7 12 179,49 12 179,49      0,00  14 743,59   2692,31 44 423,08
8 12 179,49 12 179,49      0,00    2564,10   1474,36 45 897,44
9 12 179,49   2564,10   9615,38       0,00    256,41 36 538,46
10 12 179,49      0,00 12 179,49       0,00      0,00 24 358,97
11 12 179,49      0,00 12 179,49       0,00      0,00 12 179,49
12 12 179,49      0,00 12 179,49       0,00      0,00      0,00

Пример расчёта кредита аннуитетными платежами[править | править код]

Расчёт равных месячных платежей (X), необходимых для выплаты ипотечной ссуды (P) в 100 тыс. руб. с процентной ставкой (r) 10 % годовых/100, взятой на (n) 20 лет.

Месячный платеж  ;[2]

Дата Денежный
поток
Проценты Погашение
основного долга
Остаток основного
долга
01.01.10 -100000,00     100000,00
01.02.10 936,64 797,41 139,23 99860,77
01.03.10 936,64 796,30 140,34 99720,44
01.04.10 936,64 795,18 141,45 99578,98
01.05.10 936,64 794,06 142,58 99436,40
01.06.10 936,64 792,92 143,72 99292,68
01.07.10 936,64 791,77 144,87 99147,82
... ... ... ... ...
01.10.29 936,64 29,29 907,35 2765,69
01.11.29 936,64 22,05 914,59 1851,11
01.12.29 936,64 14,76 921,88 929,23
01.01.30 936,64 7,41 929,23 0,00

Пример расчёта с учётом количества дней в месяцах и годах

Дата Денежный
поток
Проценты Формула расчёта
процентов
Погашение основного
долга
Остаток основного
долга
01.01.10 -100000,00       100000,00
01.02.10 936,64 812,77 =(1,1^(31/365)-1)*100000 123,87 99876,13
01.03.10 936,64 732,92 =(1,1^(28/365)-1)*99876,13 203,72 99672,41
01.04.10 936,64 810,11 =(1,1^(31/365)-1)*99672,41 126,53 99545,88
01.05.10 936,64 782,88 =(1,1^(30/365)-1)*99545,88 153,76 99392,12
01.06.10 936,64 807,83 =(1,1^(31/365)-1)*99392,12 128,81 99263,31
01.07.10 936,64 780,65 =(1,1^(30/365)-1)*99263,31 155,99 99107,32
... ... ... ... ... ...
01.10.29 936,64 27,94 =(1,1^(30/365)-1)*3552,24 908,70 2643,54
01.11.29 936,64 21,49 =(1,1^(31/365)-1)*2643,54 915,15 1728,39
01.12.29 936,64 13,59 =(1,1^(30/365)-1)*1728,39 923,05 805,34
01.01.30 811,89 6,55 =(1,1^(31/365)-1)*805,34 805,34 0,00

Итого сумма процентов за 20 лет составляет 124668,85 руб.

Банковский расчёт аннуитета[править | править код]

По сложившейся практике банк считает аннуитетный платеж по следующей формуле

,[3]

где

- ежемесячный аннуитетный платеж

- кредит

- годовая процентная ставка

-количество месяцев кредита

Пример

Пусть =100000, =120 %,=12

Тогда

Месяц Платеж Погашение

процентов

Погашение

основного

долга

Остаток

основного

долга

0 100000,00
1 14676,33 10000,00 4676,33 95323,67
2 14676,33 9532,37 5143,96 90179,71
3 14676,33 9017,97 5658,36 84521,35
4 14676,33 8452,14 6224,19 78297,16
5 14676,33 7829,72 6846,61 71450,55
6 14676,33 7145,06 7531,27 63919,28
7 14676,33 6391,93 8284,40 55634,88
8 14676,33 5563,49 9112,84 46522,04
9 14676,33 4652,20 10024,13 36497,91
10 14676,33 3649,79 11026,54 25471,37
11 14676,33 2547,14 12129,19 13342,18
12 14676,40 1334,22 13342,18 0,00

Однако, в ст. 6 353-ФЗ «О ПОТРЕБИТЕЛЬСКОМ КРЕДИТЕ (ЗАЙМЕ)»[4] , формула имеет вид

Она основана на формуле

где  — кредит

-ое погашение основного долга


расчёт должен быть таким


k Месяц Денежный

поток

Погашение

процентов

Погашение

основного

долга

Остаток

основного

долга

1 0 -100000,00 100000,00
2 1 14676,33 1334,21 13342,12 86657,88
3 2 14676,33 2547,13 12129,20 74528,68
4 3 14676,33 3649,79 11026,54 63502,14
5 4 14676,33 4652,20 10024,13 53478,01
6 5 14676,33 5563,48 9112,85 44365,16
7 6 14676,33 6391,92 8284,41 36080,75
8 7 14676,33 7145,05 7531,28 28549,47
9 8 14676,33 7829,71 6846,62 21702,85
10 9 14676,33 8452,13 6224,20 15478,65
11 10 14676,33 9017,97 5658,36 9820,29
12 11 14676,33 9532,37 5143,96 4676,33
13 12 14676,33 10000,00 4676,33 0,00

По логике законодателя, если в расчёте отсутствуют комиссии, то ПСК=

Поскольку погашение происходит точно каждый месяц, поэтому в формуле ст. 6 все , , ,ЧБП=12, =12, при , , =ПСК/ЧБП/100%=120 %/12/100%=0,1 и формула преобразуется в

Отсюда для

Действительно, в таблице, например,

При этом проценты () рассчитываются по формуле

Например, для

Что соответствует расчёту сложными процентами от погашения основного долга

Физический смысл данного расчёта состоит в том, что в день выдачи кредита кредит делится на 12 неравных подкредита на 1,2, …. 12 месяцев

Например, для в день выдачи кредита (соответствует 0 -му месяцу) выдается кредит 4676,33 на 12 месяцев с единственным погашением через 12 месяцев.

Расчёт для выглядит по меньшей мере странно: в соответствии с определением процентной ставки процент за год .

В то же время,

Дело в том, что исторически произошла путаница двух понятий: годовая процентная ставка и 12-кратная среднемесячная процентная ставка. При расчёте простыми процентами данные понятия являются идентичными. Поскольку расчёт производится сложными процентами, следовательно, и ПСК в ст. 6 353-ФЗ[4], и в банковском расчёте (в данном случае, Сбербанка) в данном примере являются 12-кратными среднемесячными процентными ставками ().

Пусть среднемесячная процентная ставка , тогда двенадцатикратная среднемесячная процентная ставка , а годовая процентная ставка

До 1 сентября 2014 года формула расчёта ПСК в ст.6 353-ФЗ[5] выглядела так:

Здесь ПСК действительно вычисляется правильно, получается правильная годовая процентная ставка , ее можно рассчитать в Excel при помощи функции ЧИСТВНДОХ

Таким образом, если банк считает сложными процентами, тогда

Если банк считает простыми процентами, тогда

Сначала производится расчёт

Затем

Всё это более, чем странно, поскольку в ответе на вопрос ДБР к ЦБР от 18.08.2014[6] указывается:

«При расчёте ПСК учитываются все платежи по кредитному договору (договору займа) (в том числе предусмотренные договором платежи в пользу третьих лиц) по принципу сложных процентов»

То есть, по мнению законодателя формула

рассчитана по принципу сложных процентов

Но по принципу сложных процентов рассчитана формула

где

 — год

 — порядковый номер дня в году (1 января — 1, 31 декабря невисокосного года — 365)

здесь возникает неопределенность: 1 января на начало дня начисляются проценты за 31 декабря предыдущего года, поэтому 1 января может относиться как к текущему году, так и к предыдущему, поэтому по другой версии 1 января — 0, 31 декабря невисокосного года — 364

 — число дней в году (365 или 366)

При данная формула полностью совпадает с

«Процентные доходы и процентные расходы по размещенным и привлеченным средствам начисляются в порядке и размере, предусмотренными соответствующим договором, на остаток задолженности по основному долгу, учитываемой на соответствующем лицевом счёте на начало операционного дня. При начислении процентных доходов и процентных расходов в расчёт принимаются величина процентной ставки (в процентах годовых) и фактическое количество календарных дней, на которое привлечены или размещены средства. При этом за базу берется действительное число календарных дней в году — 365 или 366 дней соответственно, если иное не предусмотрено соглашением сторон.»[7]

Таким образом, банк может заключить соглашение сторон, при котором число календарных дней в году — 365, в месяце — 30, в году 12 месяцев.

Проценты считаются на остаток задолженности по основному долгу по той части кредита, по которой происходит текущая выплата, то есть на

Тогда формула расчёта процентов будет .

Здесь  — среднемесячная процентная ставка, в долях единицы

 — число полных месяцев с выдачи кредита

 — отношение дней с момента завершения -го месяца до даты k-го денежного потока к 30

 — 12-кратная среднемесячная процентная ставка

 — годовая процентная ставка

Тогда ПСК при отсутствии комиссий и при подавляющем большинстве досрочных погашений всегда будет равна 12-кратной среднемесячной процентной ставке

Пример расчёта универсального аннуитета[править | править код]

Существует пример, который подходит и для банковского расчёта, и для ст. 6 353-ФЗ, и для 2008-У, и для математических расчётов, в котором нет никаких округлений.

Для наглядности рассмотрим пример банковского расчёта:

,[3]

где

- ежемесячный аннуитетный платеж

- кредит

- годовая процентная ставка

-количество месяцев кредита

Пусть погашение кредита происходит равными платежами ежегодно. Тогда:

-количество лет кредита

Пример

Пусть =100000, =120 %,=2

Тогда

Дата Платеж Погашение

процентов

Погашение

основного

долга

Остаток

основного

долга

11.01.2017 100000
11.01.2018 151250 120000 31250 68750
11.01.2019 151250 82500 68750 0

Посчитаем ПСК по формуле 2008-У (вместо PSK сразу подставляем 120 %/100%=1,2):

Посчитаем ПСК по формуле ст. 6 353-ФЗ (Поскольку погашение происходит точно каждый год, поэтому в формуле ст. 6 все , , ,ЧБП=1, =2, при , , =ПСК/ЧБП/100%=120 %/1/100%=1,2):

поскольку в ответе на вопрос ДБР к ЦБР от 18.08.2014[6] указывается:

«При расчёте ПСК учитываются все платежи по кредитному договору … по принципу СЛОЖНЫХ процентов, поэтому значение ПСК может отличаться от процентной ставки по кредитному договору …»,

Следовательно, банк в расчётах использует сложные проценты, хотя декларирует использование простых.

Будущая стоимость аннуитетных платежей[править | править код]

Будущая стоимость аннуитетных платежей предполагает, что платежи осуществляются на приносящий проценты вклад. Поэтому будущая стоимость аннуитетных платежей является функцией как величины аннуитетных платежей, так и ставки процента по вкладу.

Будущая стоимость серии аннуитетных платежей (FV) вычисляется по формуле (предполагается сложный процент)

,

где r — процентная ставка за период, n — количество периодов, в которые осуществляются аннуитетные платежи, X — величина аннуитетного платежа.

Аннуитет пренумерандо в рассматриваемом случае начисления процентов по аннуитетным платежам, имеет на один период начисления процентов больше. Поэтому формула для вычисления будущей стоимости аннуитета пренумерандо приобретает следующий вид

В табличных процессорах в состав финансовых функций входит функция для вычисления будущей стоимости аннуитетных платежей. В OpenOffice.org Calc для вычисления будущей стоимости аннуитетных платежей (как постнумерандо, так и пренумерандо) применяется функция FV.

Расчёт составляющих аннуитета[править | править код]

При простых процентах

Аннуитетный платеж = Погашение ОД + Проценты

где Погашение ОД — сумма в погашение тела займа

Проценты — сумма процентов по ссуде за месяц, выплачиваются после полного погашения ОД

Проценты по кредиту = (Сумма ОД х Процентная ставка х Число дней между датами) / (100 х Число дней в году)

Где сумма ОД — сумма основного долга на дату расчёта.

Ставка — процентная ставка в текущем периоде. Если было изменение процентной ставки, берется новая ставка.

Число дней между датами — разность в днях между датами «Дата текущего платежа» и дата предыдущего платежа.[8]

При сложных процентах

Аннуитетный платеж = Погашение ОД + Проценты

где Погашение ОД — сумма в погашение тела займа

Проценты — сумма процентов по ссуде за месяц, выплачиваются ежемесячно

Проценты по кредиту = Сумма ОД х ((1+Процентная ставка/100)^((Число дней между датами)/ (Число дней в году)) −1)

Где сумма ОД — сумма основного долга на дату расчёта.

Ставка — процентная ставка в текущем периоде. Если было изменение процентной ставки, берется новая ставка.

Число дней между датами — разность в днях между датами «Дата текущего платежа» и дата предыдущего платежа.[9]

См. также[править | править код]

Ссылки[править | править код]

Примечания[править | править код]

  1. Ефимов С.Л. Аннуитет // Экономика и страхование: Энциклопедический словарь. — Москва: Церих-ПЭЛ, 1996. — С. 5. — 528 с. — ISBN 5-87811-016-4.
  2. Банковское дело: Учебник для вузов. / Под ред. Г. Белоглазовой, Л. Кроливецкой. — 2-е изд.. — СПб.: Питер, 2010. — С. 240. — 400 с. — ISBN 978-5-91180-733-7.
  3. 1 2 п. 3.1.1. Общих условий предоставления, обслуживания и погашения кредитов для физических лиц по продукту Потребительский кредит.
  4. 1 2 353-ФЗ "О ПОТРЕБИТЕЛЬСКОМ КРЕДИТЕ (ЗАЙМЕ).
  5. ФЗ "О потребительском кредите (займе)" в первоначальной редакции.
  6. 1 2 Департамент банковского регулирования. Вопрос Центральному банку Российской Федерации от 18.08.2014. Центральный банк Российской Федерации (19.09.2014).
  7. ЦЕНТРАЛЬНЫЙ БАНК РОССИЙСКОЙ ФЕДЕРАЦИИ (БАНК РОССИИ) ПОЛОЖЕНИЕ О порядке определения доходов, расходов и прочего совокупного дохода кредитных организаций // Вестник Банка России : журнал. — 2015. — 13 февраля (№ 12 (1608)). — С. 3.
  8. Формулы для расчёта досрочного погашения аннуитетного кредита | Калькулятор с досрочным погашением онлайн. mobile-testing.ru. Проверено 13 апреля 2016.
  9. Аннуитетный платеж. www.mathinary.com. Проверено 11 августа 2017.