Дубильные вещества

Материал из Википедии — свободной энциклопедии
Перейти к: навигация, поиск

Дуби́льные вещества́, также дубящие вещества — группа разнообразных и сложных по составу растворимых в воде органических веществ ароматического ряда, содержащих гидроксильные радикалы фенольного характера. Дубильные вещества широко распространены в растительном царстве, обладают характерным вяжущим вкусом. Они способны осаждаться из водного или водно-спиртового раствора раствором клея, а с солями железа давать различных оттенков зелёные или синие окрашивания и осадки (чернильного свойства).

Различные части растений, содержащие значительное количество дубильных веществ или экстракты, приготовленные из таких растений, именуются Дубильные материалы и используются для дубления.

Распространение в природе[править | править код]

В растениях (в коре, древесине, корнях, листьях, плодах) они являются или как нормальные продукты их жизнедеятельности (физиологические дубильные вещества, по И. Р. Вагнеру; Ч. Ф. Кросс и Э. Дж. Бивен[1] смотрят на дубильные вещества как на выделения растительного организма и сравнивают их в этом отношении с мочевиной животных), или же составляют (патологические дубильные вещества) более или менее значительную часть болезненных наростов, образующихся на листьях и других органах некоторых видов дуба и сумаха вследствие укола, производимого насекомыми (см. дубильные материалы).

Свойства[править | править код]

Дубильные вещества в основном аморфны, имеют более или менее ясно выраженный кислотный характер и обладают свойством (по преимуществу физиологические дубильные вещества) дубить кожу (шкуры), то есть отнимать у них в значительной мере способность к гниению и затвердеванию при высыхании.

Будучи веществами легко окисляющимися, они в присутствии щелочей буреют, поглощая кислород воздуха, и во многих случаях действуют восстановительно, например, на соли благородных металлов, а некоторые и на фелингову жидкость.

История изучения[править | править код]

Несмотря на то, что дубильные вещества стали известны уже давно (таннин был впервые получен Николя Дейе и независимо Сегеном в 1797 г. и в руках Берцелиуса в 1815 г. имелся уже в довольно чистом состоянии) и много изучались, к началу XX века они были недостаточно исследованными, и не только химическая натура и строение почти всех их оставалось невыясненными, но даже и эмпирический состав очень многих из них разными исследователями делался различно. Объясняется это легко, с одной стороны, тем, что, будучи в большинстве веществами, не способными кристаллизоваться, они трудно получаются в чистом виде, а с другой — малою их стойкостью и легкою изменяемостью. Г. Глазивец (1867), как и многие другие, считал все дубильные вещества за гликозиды или тела, им подобные; однако позднейшие исследования показали, что таннин хотя, по-видимому, и встречается в соединении с глюкозой в альгаробиллах и мироболанах (Zöllfel, 1891), но сам по себе не есть гликозид (H. Schiff 1873), также и дубильные кислоты дубовой коры (Etti 1880, 83, 89, Löwe 1881), равно как и очень многие другие дубильные вещества, ничего общего с гликозидами не имеют, а получение из некоторых из них сахаристых веществ обусловливалось исключительно нечистотою исследовавшихся препаратов.

На конец XIX века можно с достаточной уверенностью судить лишь о строении таннина, представляющего ангидрид галловой кислоты; что же касается других, то в них пока лишь, по-видимому, возможно предполагать, судя по реакциям распадения и некоторым другим, частью ангидридные соединения многоатомных фенолокислот и фенолов, образованные либо по типу простых, либо по типу сложных эфиров, частью ароматические кетонокислоты, являющиеся продуктами конденсации производных галловой кислоты; но часть дубильных веществ всё же должно и поныне считать за глюкозиды. Ввиду неизвестности строения сама собою понятна невозможность естественной группировки дубильных веществ — собственно говоря, дубильные вещества выделяются в особую группу органических соединений, обладающих некоторой совокупностью общих признаков, лишь благодаря именно неизвестности их строения.

Весьма возможно, что по выяснении последнего они распределятся со временем по различным классам органических соединений, и тогда не представится более надобности и в особом общем названии для них, а нынешнее название «дубильное вещество», согласно недавнему на конец XIX века предложению Ф. Рейнитцера (англ.), придется, пожалуй, удержать только для тех из них, которые на самом деле способны дубить кожи. Деление их по окрашиванию, производимому с солями окиси железа, на железосинящие и железозеленящие ныне оставлено, потому что одно и то же дубильное вещество может давать иногда синее, а иногда зелёное окрашивание, смотря по тому, какую взять соль железа, а сверх того, окрашивание может изменяться от прибавки, например, малого количества щелочи. Деление дубильных веществ на физиологические, дубящие кожу и вместе с тем дающие при сухой перегонке пирокатехин и не дающие галловой кислоты при кипячении с слабой серной кислотой, и патологические, для дубления менее пригодные (хотя и осаждающиеся раствором клея), при сухой перегонке дающие пирогаллол, а при кипячении со слабой серной кислотой — галловую кислоту, также не вполне отвечает фактам, ибо, как на конец XIX века известно, и патологические дубильные вещества могут, хотя и не столь успешно, служить для дубления, а кроме того, таннин, например, являясь по преимуществу патологическим дубильным веществом, встречается, по-видимому, и как нормальный продукт (сумах, альгаробилла, мироболаны). Как кислоты дубильные вещества образуют металлические производные — соли, из которых свинцовые, представляющие нерастворимые в воде аморфные осадки, нередко применяются для извлечения дубильного вещества из водных экстрактов дубильных материалов, а также при анализе.

Способы получения[править | править код]

Для получения дубильного вещества в чистом состоянии природные дубильные материалы экстрагируют водой или другими растворителями: крепким или слабым спиртом, чистым эфиром или в смеси со спиртом, уксусным эфиром и т. п.; экстракты выпаривают, и получаемые в остатке дубильные вещества очищают с помощью обработки их теми или другими из указанных растворителей. Чаще, приготовив водный или водно-спиртовый экстракт, извлекают из него дубильное вещество взбалтыванием с уксусным или простым эфиром или с их смесью или же осаждают (лучше фракционированно) уксуснокислым свинцом и, отфильтровав, разлагают осадки свинцовых соединений сернистым водородом. По-видимому, последний способ, практиковавшийся весьма часто прежними исследователями, не всегда даёт удовлетворительные результаты в смысле чистоты получаемых продуктов. Пользуются иногда для осаждения дубильных веществ из водных экстрактов уксуснокислым хинином, уксуснокислою медью, рвотным камнем, поваренною солью, соляной кислотой и др. Для очищения прибегают иногда к помощи диализа, дающего с таннином хорошие результаты.

Описание отдельных дубильных веществ[править | править код]

При описании дубильных веществ необходимо подробно остановиться лишь на немногих важнейших для практики и лучше исследованных.

Танин[править | править код]

Танин, галлодубильная кислота или просто дубильная кислота, находится в различных сортах чернильных орешков, патологических кнопперсах, сумахе, альгаробилле, мироболанах; имеет состав C14H10O9; представляет вяжущего вкуса аморфный порошок, растворимый в воде, спирте и уксусном эфире, нерастворимый в эфире, бензоле и др.; оптически недеятелен; даёт с хлорным железом в водном растворе чёрно-синий осадок, что применяется как качественная реакция на соли окиси железа; легко окисляется, поглощая в присутствии щелочей кислород из воздуха и восстанавливая закись меди из солей её окиси и соли серебра; осаждается из водных растворов (в отличие от галловой кислоты) клеем, сырой кожей, алкалоидами, альбуминатами, слабыми соляной и серной кислотами и многими солями (напр., поваренной). Согласно К. Бёттингеру (1888), соединение танина с клеем содержит около 34 % танина. Танин разлагает углекислые соли, обнаруживая ясно кислотные свойства. Его соли аморфны, в основном нерастворимы и своим составом указывают на присутствие в его частице лишь одного карбоксила (H. Schiff). При нагревании до 210° танин дает пирогаллол; при кипячении с слабой серной кислотой или едким кали превращается нацело в галловую кислоту. Различные сорта продажного танина дают при этом также изменчивые количества глюкозы, что и дало повод Штреккеру и др. рассматривать танин как глюкозид галловой кислоты. Однако вполне чистый танин, полученный, например, экстрагированием уксусным эфиром, не образует следов глюкозы (Löwe). Возможно, что в продажных сортах в виде подмеси находится глюкозид, но не галловой кислоты, а танина (H. Schiff).], при кипячении с водным аммиаком распадается на галламид и галловокислый аммиак (Etti, 1884), подобно тому, как ангидрид молочной кислоты даёт амид этой кислоты и её аммиачную соль; при кипячении с уксусным ангидридом образует пятиацетильный эфир C14H5(C2H3O)5O9. Эти реакции определяют строение танина как дигалловой кислоты, представляющей ангидрид галловой

С6H2(OH) 3 СО—О—С 6H2 (ОН) 2 СОНО.

В подтверждение такого строения танина Г. Шиффом (1873) получена из галловой кислоты при нагревании её с хлорокисью фосфора, а также при выпаривании её водного раствора с мышьяковой кислотой, дигалловая кислота по уравнению

2C6H2(OH)3COHO — H2O = С 6H2 (OH) 3 СО—О—С 6H2 (OH) 2 СОНО

по своим свойствам, реакциям и производным тождественная с танином.

танин находит обширное применение в медицине, в производстве чернил, красильном деле, для получения галловой кислоты и пирогаллола, но для дубления кож не применяется). Кроме дигалловой кислоты, Шиффом получены искусственно ангидриды и других многоатомных фенолокислот, а также сульфофенолокислот, со свойствами дубильных веществ и близкие к танину. Сюда относятся: динитрогалло- и дифлороглюцинкарбоновые кислоты, полученные (1888) при действии хлорокиси фосфора на соответствующие изомеры галловой кислоты и имеющие состав C14H10O9.

При кипячении протокатеховой кислоты с мышьяковой получена (1882) дипротокатеховая кислота C14H10O7 = 2C7H6O4 — H2O, показывающая все реакции, свойственные танину, также при кипячении с минеральными кислотами дающая обратно протокатеховую кислоту, с аммиаком её амид и аммиачную соль, но с хлорным железом, в отличие от танина, дающая зелёное окрашивание. При действии хлорокиси фосфора протокатеховая кислота образует ещё тетрапротокатеховую кислоту C28H18O13 = 4С7H6O4 — 3Н2O, по окрашиванию с хлорным железом и др. свойствам сходную с предыдущей.

Эллагогендубильная кислота[править | править код]

Стоит в близком отношении к таннину, являясь, как и он, производным галловой кислоты, и часто встречается вместе с ним в растениях. Она составляет главную массу дубильного вещества мироболанов, альгаробилл, диви-диви (см. Дубящие материалы) и, вероятно, коры корней граната (Löwe 1875, Zöllfel 1891), а также найдена вместе с дубодубильной кислотой C16H14O9 в древесине черешчатого дуба (Etti 1889). Высушенная при 100°, она представляет состав C14H10O10 и вид буроватой аморфной массы; растворима в воде, спирте и уксусном эфире; образует чёрно-синий осадок с уксуснокислым железом и осадки с клеем, белком, алкалоидами и рвотным камнем; при нагревании с водой до 110° переходит в эллаговую кислоту, теряя при этом 2Н2О, и образует с уксусным ангидридом пятиацетильный эфир. Zöllfel приписывает ей строение, выражаемое формулой С6Н2(ОН) 3 СО—О—О—С 6 Н2 (ОН) 2 СООН = 2C 6H2(OH) З COHO — H2. Эллаговая кислота C14H6O8 +2Н2О добывается из предыдущей или непосредственно из диви-диви; найдена во многих дубильных материалах, где, быть может, образуется на счет эллагогендубильной кислоты, получается искусственно из галловой кислоты при разнообразных условиях по уравнению: 2C7H6O5 = C14H6O8 + 2H2O + H2, напр., при нагревании её с мышьяковой к. (Löwe 1868, H. Schiff 1873), при нагревании её этилового эфира с раствором соды (Н. Schiff 1879) и мн. др. Она представляет желтоватый кристаллический порошок; трудно растворима в воде и спирте, нерастворима в эфире; теряет при 100° всю кристаллизационную воду, поглощая её обратно во влажном воздухе, если не была нагрета выше 120°; с хлорным железом даёт сперва зелёное и затем чёрно-синее окрашивание, а с азотной и азотистой кислотами в присутствии воды — кроваво-красное (характерно); образует четырёхацетильный (H. Schiff, Zöllfel) и такой же бензольный (Goldschmidt u. Jahoda 1892) эфиры; хотя ей и отвечают разнообразного состава труднорастворимые микрокристаллические или аморфные соли, однако кислотные её свойства выражены слабо, и угольную кислоту из углекислых солей она вытесняет с трудом; при восстановлении амальгамой натрия даёт как конечный продукт γ-гексаоксидифенил С12Н4(ОН)6, который образуется из неё также вместе с β-гексаоксидифенилом при плавлении с едким натром; при кипячении с концентрированным раствором едкого кали превращается в гексаоксидифениленкетон C13H8O7, а при перегонке с цинковой пылью во флуорен С13Н10. Строение её не вполне выяснено.

Дубодубильные кислоты[править | править код]

Находятся в молодой коре (Eichenrindegerbsäure), древесине (Eichenholzgerbsäure) и листьях различных видов дуба. Кислоте (из коры), содержащей в круглых числах 56 % углерода и 4 % водорода и дающей с хлорным железом синее окрашивание, Карл Этти (1880, 1883) даёт формулу C17H16O9, а Беттингер (1887) C19H16O10 (аналитические данные Леве (1881) хорошо согласуются с формулой Этти). Из одной дубовой коры Этти получил дубильную кислоту состава C18H18O9, из коры Quercus pubescens C20H20O9, из экстракта древесины черешчатого дуба (Qu. pedunculata) C16H14O9, а из этой последней действием соляной кисл. C15H12O9 (1889). К группе дубодубильных кислот Этти причисляет также дубильную кислоту из коры красного бука состава C20H22O9 и из шишек хмеля состава C22H26O9. дубильное вещество чайных листьев, по Рохледеру, есть также дубодубильная кисл. Дубодубильные кислоты представляют аморфные порошки различных оттенков от буро-красного до светло-красного цвета (C15H12O9 желт.), растворимые в воде (за исключением кислоты C16H14O9, которая почти не растворима), спирте, смеси спирта с эфиром, уксусном эфире и трудно растворимые в чистом эфире; имеют в водном растворе кислую реакцию; растворяются в щелочах; с уксуснокислым свинцом дают желтовато-белые осадки свинцовых соединений; с окисью магния образуют растворимые в воде средние и кислые соли (Etti); с хлорным железом кислоты C17H16O9 (или C19H16O10, по Беттингеру) и C16H14O9 дают синие осадки, прочие зелёные; осаждаются клеем (осадок, по Беттингеру, содержит около 43 % дубодубильной кислоты) и по действию на кожу являются типическими дубильными веществами.

Весьма характерна для дубодубильных кислот способность, вполне отсутствующая у таннина, образовать ангидриды при нагревании до 130°—140° и при кипячении со щелочами и разведенными минеральными кислотами. При этом, по Этти, две частицы дубильной кислоты теряют одну или более частиц воды (до пяти, смотря по условиям и числу незамещенных водных остатков в частице кислоты). Кислота C17H16O9, например, даёт 4 ангидрида C34H30O17 (флобофен), C34H28O16, C34H26O15 (дубовое красное) и C34H24O14 [Но не даёт ни следов какого-либо сахаристого вещества ни при кипячении с H2SO4, ни при действии эмульсии (Etti, Löwe).].

Некоторые из этих ангидридов находятся готовыми в дубовой коре (флобофен и дубовое красное, Eichenroth), составляя такое же дубильное начало её, как и сами кислоты. Они имеют вид аморфных, в основном красных или буро-красных порошков, трудно или нерастворимы в чистой воде, но растворимы в ней в присутствии дубодубильной кислоты, а также в спирте и щелочах. Ангидриды, представляющие предел дегидратации дубильных кислот, в спирте и щелочах не растворяются. Флобофен и дубовое красное к хлорному железу, клею, коже, уксуснокислому свинцу относятся одинаково с самой дубильной кислотой и подобно ей восстанавливают Фелингову жидкость. Ангидриды эти обратно воды не присоединяют ни при каких условиях (Etti). Кислота C17H16O9 при сухой перегонке дает пирокатехин и вератрол С6Н4(ОСН3)2, при плавлении с едким кали пирокатехин, протокатеховую кислоту и флороглюцин, при кипячении с слабой H2SO4 галловой кислоты не образует (отличие от таннина) и лишь с трудом и в малом количестве при нагревании с нею в запаянной трубке до 130°—140°, с крепкой соляной кислотою при 150°—180° отщепляет метильные группы в виде хлористого метила (Etti). Эти реакции в основном свойственны и др. дубодубильным кислотам. Кислота C16H14O9 с соляною кислотой, отщепляя СН3, переходит отчасти в кислоту C15H13O9 с одним СН3 в составе, который и выделяется в виде йодистого метила при кипячении с йодистым водородом (Etti [Замечательно, что ангидриды дубодубильных кислот, в противоположность самим кислотам, не способны отщеплять CH3 J при действии HJ (Etti).]). Для этой же кислоты C16H14O9 получены гидроксиламинное и фенилгидразинное производные, что указывает на присутствие в её составе карбонильной группы СО. Ацетильные производные дубодубильных кислот изучены недостаточно. Получение их в чистом состоянии затрудняется, по-видимому, легкостью, с которою дубодубильные кислоты переходят в ангидриды в кислой среде. Ацетильному производному кислоты из экстракта дубовой древесины Беттингер даёт состав С15Н7(СН3О)5О9, что находится в согласии с данными Этти для строения полученных им кислот C16H14O9 и C15H12O9.

Кинодубильная кислота[править | править код]

Кинодубильная кислота (Kin oroth) составляет главную массу кино (см. Дубильные материалы) и представляет ангидрид киноина , из кот. может быть получена нагреванием при 120°—130°. Киноин также находится в кино, бесцветен, кристалличен и растворим в воде, спирте и немного в эфире. Он клеем не осаждается, а с хлорным железом даёт красное окрашивание и, следовательно, не обладает характерными свойствами дубильных веществ. Наоборот, в ангидриде его они явственно развиты и обусловливают применение кино как дубла. Кинодубильная кислота представляет красное аморфное смолистое вещество, растворимое в спирте и трудно растворимое в холодной воде, дающее осадок с клеем и грязно-зелёное окрашивание с . При нагрвании до 160°—170° или при кипячении с слабыми серной или соляной кислотами она переходит в ангидрид с подобными же свойствами. Как сам киноин, так и кинодубильная кислота с соляной кислотой в запаянной трубке при 120°—130° распадаются на пирокатехин, галловую кислоту и хлористый метил. На основании этой реакции Этти считает киноин за метиловый эфир пирокатехингалловой кислоты (1878).

Катехудубильные кислоты[править | править код]

Находятся вместе с катехинами близкого между собою состава в различных сортах катеху и в гамбире (см. также Дубильные материалы). Они представляют ангидриды катехинов, из которых могут быть получены и искусственно простым нагреванием до 130—170°, кипячением с содой или нагреванием с водой при 110°. Состав катехинов, высушенных при температуре около 100° (они содержат до 5 паев кристаллизационной воды, которую и теряют при этой температуре), выражается формулами (Liebermann u. Teuchert 1880), , (Etti, Hlasiwetz) и др. Катехины кристаллизуются в форме очень мелких иголочек светло-жёлтого цвета, дают с зелёное окрашивание, но клеем не осаждаются, при плавлении с КНО распадаются на флороглюцин и протокатеховую кислоту, а при сухой перегонке образуют пирокатехин. Для катехина получены двуацетильный и двубензоильный эфиры (Lieb. u. Teuch.). Катехин при 140° с разведенной серной кислотой распадается на флороглюцин и пирокатехин. С он реагирует подобно пирокатехину, а с древесиной сосны — подобно флороглюцину, представляя как бы молекулярное соединение этих двух фенолов (Etti). Катеху-Д. кислоты, по Этти (1877—81), имеют состав , и и представляют красновато-бурые аморфные порошки с характерными свойствами дубильных веществ. Нагреванием катехинов до более высокой температуры или с минеральными кислотами получены ангидриды, образованные с ещё большею потерею воды (Etti).

Маклурин[править | править код]

Маклурин, или моринодубильная кислота, (Hiasiwetz 1863, Benedict 1877) и морин (Löwe 1875, Benedict u. Hazura 1884) находятся в жёлтом дереве (Morus tinctoria или Maclura aurantiaca, применяется в красильном деле), откуда их извлекают кипячением с водой и разделяют, пользуясь меньшею растворимостью морина в воде. Маклурин, светло-жёлтый кристаллический порошок, из свойств, характеризующих дубильные вещества, обладает лишь способностью давать с железом (смесью закиси и окиси) чёрно-зелёный осадок и осаждаться клеем, алкалоидами и альбуминатами, но для дубления неприменим. Подобно многим дубильным веществам, он распадается на флороглюцин и протокатеховую кислоту по уравнению:

.

Такое распадение происходит количественно при кипячении его с крепким раствором едкого кали или при 120 °C с слабою серною кислотою и указывает на эфирную натуру этого вещества. Морин, составляющий красящее начало жёлтого дерева и кристаллизующийся из водного раствора в форме длинных блестящих игл, за исключением зелёного окрашивания с хлорным железом, типических свойств дубильных веществ не представляет. При плавлении с едким кали в качестве главных продуктов распадения он даёт резорцин и флороглюцин, при восстановлении амальгамой натрия образует флороглюцин, причём сперва переходит в изоморин (пурпурно-красные призмы), легко превращающийся обратно в морин. Как морин, так и маклурин образуют с металлами частью кристаллические, частью аморфные соли, состав которых по большому счету нельзя считать установленным.

Примечания[править | править код]

  1. Cross CF, Bevan EJ. Contributions to the chemistry of bass fibres // J Chem Soc, Trans. 1882;38:90-110.

Литература[править | править код]

Ссылки[править | править код]