Автокорреляционная функция

Материал из Википедии — свободной энциклопедии
Перейти к: навигация, поиск
График 100 случайных величин, суммированный с синусоидальным сигналом малой амплитуды. График автокорреляционной функции позволяет увидеть периодичность в ряде данных.

Автокорреляционная функция — зависимость взаимосвязи между функцией (сигналом) и ее сдвинутой копией от величины временного сдвига.

Для детерминированных сигналов автокорреляционная функция (АКФ) сигнала определяется интегралом:

и показывает связь сигнала (функции ) с копией самого себя, смещённого на величину . Звездочка означает комплексное сопряжение.

Для случайных процессов АКФ случайной функции имеет вид[1]:

,

где  — математическое ожидание, звездочка означает комплексное сопряжение.

Если исходная функция строго периодическая, то на графике автокорреляционной функции тоже будет строго периодическая функция. Таким образом, из этого графика можно судить о периодичности исходной функции, а следовательно, и о её частотных характеристиках. Автокорреляционная функция применяется для анализа сложных колебаний, например, электроэнцефалограммы человека.

Применение в технике[править | править вики-текст]

Корреляционные свойства кодовых последовательностей, используемых в широкополосных системах, зависят от типа кодовой последовательности, её длины, частоты следования её символов и от её посимвольной структуры.

Изучение АКФ играет важную роль при выборе кодовых последовательностей с точки зрения наименьшей вероятности установления ложной синхронизации.

Другие применения[править | править вики-текст]

Автокорреляционная функция играет важную роль в математическом моделировании и анализе временных рядов, показывая характерные времена для исследуемых процессов (см., например: Турчин П. В. Историческая динамика. М.: УРСС, 2007. ISBN 978-5-382-00104-3). В частности, циклам в поведении динамических систем соответствуют максимумы автокорреляционной функции некоторого характерного параметра.

Скоростное вычисление[править | править вики-текст]

Часто приходится вычислять автокорреляционную функцию для временного ряда . Вычисление «в лоб» работает за . Однако есть способ сделать это за .

Суть этого способа состоит в следующем. Можно сделать некое обратное взаимно однозначное преобразование данных, называемое преобразованием Фурье, которое поставит им во взаимно однозначное соответствие набор данных в другом пространстве, называемом пространством частот. У операций над данными в нашем обычном пространстве, таких как сложение, умножение и, главное, автокорреляция, есть взаимно-однозначные соответствия в пространстве частот Фурье. Вместо того, чтобы вычислять автокорреляцию «в лоб» на наших исходных данных, мы произведем соответствующую ей операцию над соответствующими данными в пространстве частот Фурье-спектра, что делается за линейное время O(T) — автокорреляции в пространстве частот соответствует простое умножение. После этого мы по полученным данным восстановим соответствующие им в обычном пространстве. Переход из обычного пространства в пространство частот и обратно делается с помощью быстрого преобразования Фурье за , вычисление аналога автокорреляции в пространстве частот — за O(T). Таким образом, мы получили выигрыш по времени при вычислениях.

Подготовка. Вычитаем из ряда среднее арифметическое. Преобразуем в комплексные числа. Дополняем нулями до . Затем дописываем в конец ещё нулей.

Вычисление. Автокорреляционная функция вычисляется с помощью быстрого преобразования Фурье и прямо пропорциональна первым элементам последовательности

Квадрат комплексного модуля берётся поэлементно: . Если нет погрешностей вычисления, мнимая часть будет равна нулю. Коэффициент пропорциональности определяется из требования .

См. также[править | править вики-текст]

Примечания[править | править вики-текст]

Ссылки[править | править вики-текст]