Автоморфизм

Материал из Википедии — свободной энциклопедии
Перейти к навигации Перейти к поиску

Автоморфизм алгебраической системы — изоморфизм, отображающий алгебраическую систему на себя.

Совокупность всех автоморфизмов некоторой алгебраической системы с операцией композиции и тождественным отображением в качестве нейтрального элемента образует группу. Группа автоморфизмов алгебраической системы обозначается .

Наиболее простой пример автоморфизма — это автоморфизм множества, то есть перестановка элементов этого множества.

Понятие автоморфизма можно обобщить на более абстрактные объекты, не являющиеся «множествами с дополнительной структурой». Так, в теории категорий автоморфизм определяется как эндоморфизм, являющийся также изоморфизмом (в категорном смысле этого слова).

Примеры[править | править код]

Группы автоморфизмов решёток[править | править код]

В различных областях математики используются различные понятия решётки. В частности:

  • В физике твёрдого тела и теории кристаллографических групп кристаллическая решётка — это обладающее трансляционной симметрией множество точек аффинного пространства. Автоморфизмы этого множества должны сохранять расстояние между точками, то есть быть движениями. Группа этих автоморфизмов — это кристаллографическая группа (либо сюръективно гомоморфно отображается в кристаллографическую группу)[1].
  • В теории групп решётка — это группа, изоморфная , с билинейной формой на ней (в трёхмерном евклидовом пространстве соответствует решётке Браве из теории кристаллографических групп с выделенным началом координат). Автоморфизм такой решётки должен быть автоморфизмом группы. Группа таких автоморфизмов, в отличие от кристаллографической группы, конечна, если билинейная форма решётки соответствует евклидову пространству[2].

Внутренний автоморфизм[править | править код]

Любой элемент группы определяет следующий автоморфизм, который называют внутренним автоморфизмом: каждому элементу группы ставится в соответствие сопряжённый ему элемент :

.

См. также[править | править код]

Примечания[править | править код]

  1. Pascal Auscher, T. Coulhon, Alexander Grigoryan. Heat Kernels and Analysis on Manifolds, Graphs, and Metric Spaces. — AMS, 2003. — P. 288. — ISBN 0-8218-3383-9.
  2. J. H. Conway and N. J. A. Sloane. Sphere Packings, Lattices and Groups. — 3rd ed. — Springer-Verlag New York, Inc., 1999. — P. 90. — ISBN 0-387-98585-9.

Литература[править | править код]