Азосоединения

Материал из Википедии — свободной энциклопедии
Перейти к: навигация, поиск
Структурная формула азосоединений

Азосоединения — класс органических соединений общей формулы R1—N=N—R2, формально — производные нестойкого диазена (диимида) HN=NH, у которого оба атома водорода замещены органическими радикалами[1]. Простейшее алифатическое азосоединение — азометан[de] Н3C—N=N—CH3; простейшее ароматическое азосоединение — азобензол C6H5—N=N—C6H5.

Ароматические азосоединения интенсивно окрашены и применяются в качестве красителей и пигментов.

Номенклатура[править | править вики-текст]

Названия азосоединений образуются в соответствии с заместительной номенклатурой, для обозначения азогруппы —N=N— в названиях используется частица -азо-. Симметричные азосоединения R—N=N—R именуются добавлением префикса азо- к названию соединения-предшественника радикала R. Например, если R — метил (то есть предшественником радикала является метан), то азосоединение называется «азометан»; если R — 1-нафтил, то соответствующее азосоединение — 1,1-азонафталин. Если заместители у азогруппы различны, то название образуется из имени «старшего»[прояснить] заместителя, частицы -азо- и имени «младшего» заместителя, например, нафталин-1-азобензол.

Свойства[править | править вики-текст]

Атомы азота в азогруппе sp2-гибридизованы, π-связь образуется при участии pz-орбиталей, таким образом, при отсутствии стерических затруднений все связи азогруппы —N=N— расположены в одной плоскости. Как и в случае алкенов, для азосоединений характерна геометрическая изомерия, более стабильными являются транс-изомеры, которые могут изомеризоваться в цис-форму при облучении видимым светом или ультрафиолетом с длиной волны, соответствующей области поглощения перехода n → π*.

Возможность перехода n → π*, обусловленного наличием неподелённых электронных пар, ведет к появлению слабой (вследствие запрещённости по симметрии перехода) полосы поглощения: в алифатических азосоединениях — в области 160300 нм, у цис- и транс-азобензолов — при 432 и 450 нм.

Электронный переход π → π* азогруппы ведет к появлению в УФ-спектрах ароматических азосоединений интенсивной полосы при 280320 нм, которая при введении сопряжённых с азогруппой электрондонорных заместителей ведет к батохромному сдвигу и усилению поглощения азосоединения. Такие соединения используются в качестве красителей.

Для азосоединений, несущих в заместителе сопряжённый с азогруппой подвижный атом водорода, возможна таутомерия азо- и гидразонной форм (азо-гидразонная таутомерия):

Azo Hydrazo Tautomerism V.2.svg

Реакционная способность[править | править вики-текст]

Алифатические азосоединения при нагревании или при облучении ультрафиолетом разлагаются с выделением азота и образованием свободных радикалов, поэтому некоторые из них, в частности, 2,2'-азо-бис-изобутиронитрил, разлагающийся при 60—100 °C, используются в качестве инициаторов радикальной полимеризации:

Radical initiator AIBN.svg

Термическое разложение симметричных алифатических азосоединений также используется в синтетической практике для получения алифатических соединений путём рекомбинации образующихся при их разложении радикалов[2]:

R—N=N—R → R—R + N2

Ароматические азосоединения более стабильны за счет сопряжения — так, бензолазоэтан C6H5—N=N—C2H5 кипит при 180 °C почти без разложения.

Алифатические азосоединения с атомами водорода в α-положении под действием кислот претерпевают перегруппировку в гидразоны:

R—CH2—N=N—R' → R—CH=N—NH—R'

Под действием восстановителей (NaBH4, цинк в щелочной среде и т. п.) азосоединения превращаются в гидразосоединения (1,2-замещённые гидразины):

R1—N=N—R2 + [H] → R1—NH—NH—R2

В случае использования сильных восстановитей возможно восстановление in situ промежуточно образующихся гидразинов с образованием первичных аминов:

R1—N=N—R2 + [H] → R1—NH2 + R2NH2

Мягкие окислители (например, пероксид водорода в уксусной кислоте, надкислоты) превращают азосоединения в азоксисоединения:

С6Н5—N=N—C6H5 + H2O2 → C6H5—N(O)=N—C6H5 + H2O,

а сильные (дымящая азотная кислота на холоду) — в нитросоединения, разрушая азогруппу:

C6H5—N=N—C6H5 + 4Cl2 + 4H2O → 2C6H5NO2 + 8HCl

Электрондефицитные азосоединения — азокарбонильные соединения и, особенно, азодикарбоксилаты — выступают в качестве диенофилов в реакции Дильса — Альдера[3].

Синтез[править | править вики-текст]

Стандартным методом синтеза алифатических и алкиларилазосоединений является дегидрирование N,N'-дизамещенных гидразинов действием различных окислителей (дихромат калия, оксид ртути[какой?], бром, азотная кислота и др.):

R1—NH—NH—R2 + [O] → R1—N=N—R2 + H2O

Функционализированные алифатические азосоединения могут быть получены хлорированием кетазинов с дальнейшим замещением хлора в образующихся при хлорировании α,α′-дихлоразосоединениях различными нуклеофилами:

R1R2C=N—N=CR3R4 + Cl2 → R1R2CCl—N=N—CClR3R4
R1R2CCl—N=N—CClR3R4 + 2 X → R1R2CX—N=N—CCX3R4 + 2 Cl
X = RS, CN, CH3COO, R53Al → X = R5

Первый представитель ароматических азосоединений — азобензол — был впервые получен в 1834 году Э. Мичерлихом восстановлением нитробензола в щелочной среде, этот метод применяется и поныне[4]:

2Ar—NO2 + [H] → Ar—N=N—Ar + H2O

Симметрично замещённые ароматические азосоединения также могут быть синтезированы окислением соответствующих ариламинов[5]:

2 ArNH2 + [O] → Ar—N=N—Ar + H2O,

а несимметричные могут быть получены конденсацией ароматических аминов с нитрозосоединениями:

Ar—NH2 + Ar′—N=O → Ar—N=N—Ar′ + H2O

Наиболее широко применяемым методом синтеза функционализированных ароматических азосоединений является азосочетание — реакция диазониевых солей с ароматическими соединениями, несущими электрондонорные заместители, этот метод применяется в промышленности в синтезе азокрасителей:

Azo-coupling-B-2D-skeletal.png

Азокрасители[править | править вики-текст]

Азокрасители — органические соединения, содержащие одну или несколько азогрупп, например, конго красный, метиловый оранжевый, β-нафтолоранж и другие. Азокрасители разнообразны по цвету, как правило, не очень стойки. Азокрасители — самый многочисленный класс синтетических красителей, применяют для крашения тканей, кожи, бумаги, резины, в лакокрасочной, полиграфической и других отраслях, в аналитической химии как индикатор.

См. также[править | править вики-текст]

Примечания[править | править вики-текст]