Активная фазированная антенная решётка

Материал из Википедии — свободной энциклопедии
Перейти к: навигация, поиск
РЛС Н036 Белка с АФАР для ПАК ФА, представленная НИИП на МАКС-2009
AN/APG-77 — РЛС с АФАР для истребителя F-22
АФАР в предкрылке. МАКС-2009

Активная фазированная антенная решётка (АФАР) — фазированная антенная решётка, в которой направление излучения и (или) форма диаграммы направленности регулируются изменением амплитудно-фазового распределения токов или полей возбуждения на индивидуальных активных излучающих элементах[1].

Конструкция[править | править вики-текст]

Активная фазированная антенная решётка конструктивно состоит из модулей, которые объединяют излучающий элемент (или группу излучающих элементов) и активные устройства (усилительные, генераторные или преобразовательные). Эти устройства могут в простейшем случае усиливать передаваемый или принимаемый излучающим элементом сигнал, а также осуществлять преобразование частоты сигнала, генерировать (формировать) сигнал, преобразовывать сигнал из аналоговой в цифровую форму и (или) из цифровой в аналоговую. Для совместной согласованной работы все модули АФАР должны быть объединены цепью распределения сигнала возбудителя (в режиме приёма — цепью сбора сигнала в приёмное устройство), или работа модулей должна быть синхронизирована от единого источника.

Сравнение с пассивной решёткой[править | править вики-текст]

В отличие от АФАР, пассивная ФАР не содержит активных устройств. Например, в передающей системе, оснащённой пассивной ФАР, радиосигнал генерируется и усиливается до требуемой мощности в едином для всей системы радиопередатчике, после чего распределяется (а мощность радиосигнала делится) между излучающими элементами. Напротив, в передающей активной ФАР нет единого выходного мощного усилителя: менее мощные усилители размещены в каждом её модуле.

В обычной пассивной решётке один передатчик мощностью несколько киловатт питает несколько сотен элементов, каждый из которых излучает только часть этой мощности (десятки ватт). Однако мощность современного микроволнового транзисторного излучателя также может составлять десятки ватт, и в радаре с АФАР несколько сотен таких модулей, каждый мощностью в десятки ватт, создают в целом мощный главный луч в несколько киловатт.

При идентичном результате активные решётки намного более надёжны: отказ одного приёмо-передающего элемента решётки лишь искажает диаграмму направленности антенны, несколько ухудшая характеристики локатора, но в целом он остаётся работоспособным. Катастрофического отказа лампы передатчика, что является проблемой обычных радаров, просто не может произойти. Дополнительная выгода — экономия веса: нет большой лампы высокой мощности, связанной с ней системой охлаждения и массивного блока питания высокого напряжения.

Другой особенностью, характерной только для активных решёток, является возможность управлять усилением индивидуальных приёмно-передающих модулей. При этом диапазон углов отклонения луча существенно увеличивается, в результате могут быть обойдены многие из ограничений геометрии пассивных решёток. Такие решётки называют решётками суперувеличения. Из изданной литературы неясно, используют ли какая-либо существующая или проектируемая антенная решётка эту технику.[источник не указан 188 дней]

Недостатки[править | править вики-текст]

Технология АФАР имеет две ключевые проблемы: рассеивание мощности и стоимость.

Рассеивание мощности[править | править вики-текст]

Из-за недостатков микроволновых транзисторных усилителей и монолитных интегральных схем (СВЧ МИС) эффективность передатчика модуля обычно меньше 45%. В результате AФАР выделяет большое количество теплоты, которую необходимо рассеивать, чтобы предохранить чипы передатчика от расплавления — надёжность арсенид-галлиевых СВЧ МИС повышается при низкой рабочей температуре. Традиционное охлаждение воздухом, используемое в обычных ЭВМ и авионике, плохо подходит при высокой плотности компоновки, поэтому современные AФАР охлаждаются жидкостью (американские проекты используют полиальфаолефиновый хладагент, подобный синтетической гидравлической жидкости). Типичная жидкостная система охлаждения использует насосы, вводящие хладагент через каналы в антенне и выводящие затем его к теплообменнику — им может быть как воздушный охладитель (радиатор), так и теплообменник в топливном баке (со вторым контуром, чтобы уменьшить нагрев содержимого топливного бака).

По сравнению с обычным радаром истребителя с воздушным охлаждением, радар с AФАР более надёжен, однако потребляет больше электроэнергии и требует более интенсивного охлаждения. Но AФАР может обеспечить намного большую передаваемую мощность, что необходимо для большей дальности обнаружения цели (увеличение передающей мощности, однако, имеет побочный эффект — увеличение следа, по которому радиоразведка или СПО противника могут обнаружить радар).

Стоимость[править | править вики-текст]

Для радара истребителя, требующего обычно от 1000 до 1800 модулей, стоимость AФАР становится неприемлемой, если модули стоят больше чем сто долларов каждый. Ранние модули стоили приблизительно 2 тыс. долларов, что не допускало массового использования AФАР. Однако стоимость таких модулей с развитием технологий постоянно уменьшается, поскольку себестоимость разработки и производства СВЧ МИС постоянно снижается.

Несмотря на недостатки, активные фазированные решётки превосходят обычные радарные антенны почти во всех отношениях, обеспечивая более высокую следящую способность и надёжность, пусть и при некотором увеличении в сложности и, возможно, стоимости.

Приёмо-передающий модуль[править | править вики-текст]

Приёмопередающий модуль АФАР

Приёмо-передающий модуль — это основа пространственного канала обработки сигнала в АФАР.

В его состав входит активный элемент — усилитель, который делает это устройство электродинамически невзаимным. Поэтому для обеспечения возможности работы устройства как на приём, так и на передачу в нём разделяют передающий и приёмный каналы. Разделение осуществляется либо коммутатором, либо циркулятором.

Приёмный канал[править | править вики-текст]

В состав приёмного канала входят следующие устройства:

  • Устройство защиты приёмника — обычно либо разрядник, либо другое пороговое устройство, предотвращающее перегрузку приёмного канала.
  • Малошумящий усилитель — два или более каскадов активного усиления сигнала.
  • Фазовращатель — устройство фазовой задержки сигнала в канале для задания фазового распределения по всему раскрыву решётки.
  • Аттенюатор — устройство задания (понижения, ослабления) амплитуды сигнала для задания амплитудного распределения по раскрыву решётки.

Передающий канал[править | править вики-текст]

Состав передающего канала схож с составом приёмного канала. Отличие заключается в отсутствии устройства защиты и меньших требованиях к усилителю по шумам. Тем не менее, передающий усилитель должен обладать большей выходной мощностью, чем приёмный.


Производимые БРЛС с АФАР[править | править вики-текст]

См. также[править | править вики-текст]

Примечания[править | править вики-текст]

  1. ГОСТ 23282-91. Решетки антенные. Термины и определения.

Ссылки[править | править вики-текст]