Алгебраически замкнутое поле

Материал из Википедии — свободной энциклопедии
Перейти к навигации Перейти к поиску

Алгебраически замкнутое полеполе , в котором всякий многочлен ненулевой степени над имеет хотя бы один корень.

Для любого поля существует единственное с точностью до изоморфизма его алгебраическое замыкание, то есть его алгебраическое расширение, являющееся алгебраически замкнутым.

Свойства[править | править код]

Конструкция[править | править код]

Одна из возможных конструкций алгебраического замыкания для произвольного поля была построена Эмилем Артином.

Пусть задано поле . Требуется построить алгебраическое замыкание этого поля.

Определим как множество всех неприводимых многочленов над полем . Каждому многочлену поставим в соответствие переменную . Обозначим за множество всех таких переменных . Образуем кольцо многочленов . Можно показать, что идеал , порождённый всеми многочленами вида , не является единичным. Тогда мы можем перейти к максимальному идеалу , содержающему идеал (здесь мы пользуемся аксиомой выбора), и получить поле . Если отождествить многочлены-константы с элементами основного поля, то получаем .

На поле можно смотреть как на поле, полученное присоединением к полю по одному корню каждого неприводимого многочлена. Чтобы присоединить остальные корни, необходимо повторять эту конструкцию. Повторим её для поля и получим поле . Повторяя это раз можно получить поле . Таким образом, мы имеем башню полей:

Объединение всех этих полей даст поле . Алгебраическая замкнутость этого поля очевидна.[1]

См. также[править | править код]

Примечания[править | править код]

  1. Ленг С. Алгебра. — М.: Мир, 1968.