Альфа-частица

Материал из Википедии — свободной энциклопедии
Перейти к навигации Перейти к поиску
Альфа-частица
α, α2+, He2+
Alpha Decay.svg
Альфа-частица
Ядро изотопа Гелий-4 ( )
Химический элемент Гелий
Состав 2 протона, 2 нейтрона
Семья Бозон
Магнитный момент 0
Электрический квадрупольный момент 0
Массовое число (барионное число) 4
Масса 3,727379240(82) ГэВ (около 6,644656⋅10−27 кг)
Масса, а.е.м. 4,001506179125(62)
Энергия связи 28,3 МэВ (7,1 МэВ на нуклон)[1]
Время жизни Стабильна
Чётность +
Квантовые числа
Электрический заряд 2
Спин 0
Изотопический спин 0
Гиперзаряд 4

А́льфа-части́ца (α-частица) — положительно заряженная частица, образованная двумя протонами и двумя нейтронами; ядро атома гелия-4 ( ). Впервые обнаружены Э. Резерфордом в 1899 году[1]. Альфа-частицы могут вызывать ядерные реакции; в первой искусственно вызванной ядерной реакции, проведённой Э. Резерфордом в 1919 году (превращение ядер азота в ядра кислорода) участвовали именно альфа-частицы. Поток альфа-частиц называют альфа-лучами[2] или альфа-излучением[3].

Образование[править | править код]

Альфа-частицы возникают при альфа-распаде ядер, при ядерных реакциях и в результате полной ионизации атомов гелия-4. Например, в результате взаимодействия ядра лития-6 с дейтроном могут образоваться две альфа-частицы: 6Li + 2H = 4He + 4He. Альфа-частицы составляют существенную часть первичных космических лучей; большинство из них являются ускоренными ядрами гелия из звёздных атмосфер и межзвёздного газа, некоторые возникли в результате ядерных реакций скалывания из более тяжёлых ядер космических лучей. Альфа-частицы высоких энергий могут быть получены с помощью ускорителей заряженных частиц.

Свойства[править | править код]

Масса альфа-частицы составляет 4,001 506 179 127(63) атомной единицы массы[4] (около 6,644 657 3357(20)⋅10−27 кг), что эквивалентно энергии 3727,379 4066(11) МэВ[5]. Спин и магнитный момент равны нулю. Энергия связи (выраженная в энергетических единицах разница между суммарной массой двух протонов и двух нейтронов и массой альфа-частицы) составляет 28,295 6108(16) МэВ (7,073 9027(4) МэВ на нуклон)[6][7]. Избыток массы составляет 2424,9158(1) кэВ[8]. Заряд альфа-частицы положителен и равен удвоенному элементарному заряду, или примерно 3,218·10−19 Кл.

Проникающая способность[править | править код]

Тяжёлые заряженные частицы взаимодействуют в основном с атомными электронами и поэтому мало отклоняются от направления своего первоначального движения. Вследствие этого пробег тяжёлой частицы R измеряют расстоянием по прямой от источника частиц до точки их остановки. Обычно пробег измеряется в единицах длины (м, см, мкм), а также поверхностной плотности материала (или, что равнозначно, длины пробега, умноженной на плотность) (г/см2). Выражение пробега в единицах длины имеет смысл для фиксированной плотности среды (например, часто в качестве среды выбирается сухой воздух при нормальных условиях). Физический смысл пробега в терминах поверхностной плотности — масса единицы площади слоя, достаточного для остановки частицы.

Длина пробега α-частицы в зависимости от её энергии и среды
Среда Энергия α-частиц, МэВ
4 6 8 10
Длина пробега α-частицы, мм
Воздух при нормальных условиях 25 46 74 106
Биологическая ткань 0,031 0,056 0,096 0,130
Алюминий 0,016 0,030 0,048 0,069

Детектирование[править | править код]

Детектируются альфа-частицы с помощью сцинтилляционных детекторов, газоразрядных детекторов, кремниевых pin-диодов (поверхностно-барьерных детекторов, нечувствительных к бета- и гамма-излучению) и соответствующей усилительной электроники, а также с помощью трековых детекторов. Для детектирования альфа-частиц с энергиями, характерными для радиоактивного распада, необходимо обеспечить малую поверхностную плотность экрана, отделяющего чувствительный объём детектора от окружающей среды. Например, в газоразрядных детекторах может устанавливаться слюдяное окно с толщиной в несколько микрон, проницаемое для альфа-частиц. В полупроводниковых поверхностно-барьерных детекторах такой экран не нужен, рабочая область детектора может непосредственно контактировать с воздухом. При детектировании альфа-активных радионуклидов в жидкостях исследуемое вещество смешивается с жидким сцинтиллятором.

В настоящее время наиболее распространены кремниевые поверхностно-барьерные детекторы альфа-частиц, в которых на поверхности полупроводникового кристалла с проводимостью p-типа создаётся тонкий слой с проводимостью n-типа путём диффузионного введения донорной примеси (например, фосфора). Приложение обратного смещения к p-n-переходу обедняет чувствительную область детектора носителями заряда. Попадание в эту область альфа-частицы, ионизирующей вещество, вызывает рождение нескольких миллионов электронно-дырочных пар, которые вызывают регистрируемый импульс тока с амплитудой, пропорциональной количеству родившихся пар и, соответственно, кинетической энергии поглощённой альфа-частицы. Поскольку обеднённая область имеет очень малую толщину, детектор чувствителен лишь к частицам с высокой плотностью ионизации (альфа-частицы, протоны, осколки деления, тяжёлые ионы) и малочувствителен к бета- и гамма-излучению.

Воздействие на электронику[править | править код]

Вышеописанный механизм рождения электронно-дырочных пар альфа-частицей в полупроводниках может вызвать несанкционированное переключение полупроводникового триггера при попадании альфа-частицы с достаточной энергией на кремниевый чип. При этом единичный бит в памяти заменяется нулевым (или наоборот). Для уменьшения количества таких ошибок материалы, используемые в производстве микросхем, должны обладать низкой собственной альфа-активностью.

Воздействие на человека[править | править код]

Альфа-частицы, образованные при распаде ядра, имеют начальную кинетическую энергию в диапазоне 1,8—15 МэВ[9]. При движении альфа-частицы в веществе, она создаёт сильную ионизацию окружающих атомов, и в результате этого очень быстро теряет энергию. Энергии альфа-частиц, возникающих в результате радиоактивного распада, не хватает даже для преодоления мёртвого слоя кожи, поэтому радиационный риск при внешнем облучении такими альфа-частицами отсутствует. Внешнее альфа-облучение опасно для здоровья только в случае высокоэнергичных альфа-частиц (с энергией выше десятков МэВ), источником которых является ускоритель. Однако проникновение альфа-активных радионуклидов внутрь тела, когда облучению подвергаются непосредственно живые ткани организма, весьма опасно для здоровья, поскольку большая плотность ионизации вдоль трека частицы сильно повреждает биомолекулы. Считается[10], что при равном энерговыделении (поглощённой дозе) эквивалентная доза, набранная при внутреннем облучении альфа-частицами с энергиями, характерными для радиоактивного распада, в 20 раз выше, чем при облучении гамма- и рентгеновскими квантами. Однако линейная передача энергии высокоэнергичных альфа-частиц (с энергиями 200 МэВ и выше) значительно меньше, поэтому их относительная биологическая эффективность сравнима с таковой для гамма-квантов и бета-частиц.

Таким образом, опасность для человека при внешнем облучении могут представлять α-частицы с энергиями 10 МэВ и выше, достаточными для преодоления омертвевшего рогового слоя кожного покрова. В то же время большинство исследовательских ускорителей α-частиц работает на энергиях ниже 3 МэВ[11].

Гораздо бо́льшую опасность для человека представляют α-частицы, возникающие при альфа-распаде радионуклидов, попавших внутрь организма (в частности, через дыхательные пути или пищеварительный тракт)[12]. Достаточно микроскопического количества α-радиоактивного вещества (например полония-210), чтобы вызвать у пострадавшего острую лучевую болезнь, зачастую с летальным исходом[12].

См. также[править | править код]

Примечания[править | править код]

  1. 1 2 Оглоблин А. А., Ломанов М. Ф. АЛЬФА-ЧАСТИЦА // Большая российская энциклопедия. Электронная версия (2016); https://bigenc.ru/physics/text/1816460 Дата обращения: 27.03.2022
  2. Гордиенко В. А. Введение в экологию (15 мая 2012).
  3. Взаимодействие частиц с веществом.
  4. Alpha particle mass in u. 2018 CODATA recommended values.
  5. Alpha particle mass energy equivalent in MeV. 2018 CODATA recommended values.
  6. Meng Wang, Huang W. J., Kondev F. G., Audi G., Naimi S. The Ame2020 atomic mass evaluation (II). Tables, graphs and references (англ.) // Chinese Physics C. — 2021. — Vol. 43, iss. 3. — P. 030003-1—030003-512. — doi:10.1088/1674-1137/abddaf.
  7. Обратите внимание, что в базах данных Nubase2020 и AME 2020 указаны массы и производные величины в отношении нейтрального невозбуждённого атома гелия-4; для пересчёта к альфа-частице (дважды ионизированному атому гелия-4) необходимо вычесть массы двух электронов 2 × 0,510 998 950 00(15) МэВ и прибавить их энергию связи в низшем состоянии, 0,000 079 005 МэВ.
  8. Kondev F. G., Wang M., Huang W. J., Naimi S., Audi G. The Nubase2020 evaluation of nuclear properties (англ.) // Chinese Physics C. — 2021. — Vol. 45, iss. 3. — P. 030001-1—030001-180. — doi:10.1088/1674-1137/abddae.Открытый доступ
  9. В некоторых случаях при альфа-распаде ядро, излучающее альфа-частицу, может вначале перейти в возбуждённое состояние. При этом энергия испускаемой альфа-частицы оказывается меньше, чем при переходе на основной уровень дочернего ядра, поскольку часть энергии остаётся в ядре. Возбуждённый уровень впоследствии распадается в основное состояние ядра, а энергия уносится гамма-квантом или передаётся электронам атомной оболочки (см. Внутренняя конверсия). Однако вероятность перехода ядра при альфа-распаде на возбуждённый уровень, как правило, сильно подавлена, что связано с экспоненциальным уменьшением вероятности альфа-распада при уменьшении кинетической энергии излучаемых альфа-частиц.
  10. Публикация 103 Международной Комиссии по радиационной защите (МКРЗ). Пер с англ. / Под общей ред. М. Ф. Киселёва и Н. К. Шандалы. — М.: Изд. ООО ПКФ «Алана», 2009. — С. 68—71. — 1000 экз. — ISBN 978-5-9900350-6-5.
  11. Василенко О. И., Ишханов Б. С.Капитонов И. М.Селиверстова Ж. М., Шумаков А. В. РАДИАЦИЯ. — М.: Изд-во Московского университета, 1996.
  12. 1 2 Би-Би-Си: «Суду рассказали, как в теле Литвиненко нашли полоний»

Литература[править | править код]

  • Кра­са­вин Е. А. Про­бле­мы ОБЭ и ре­пара­ция ДНК. — М., 1989.