Биморфизм

Материал из Википедии — свободной энциклопедии
Перейти к навигации Перейти к поиску

Биморфи́зм — морфизм категории, являющийся мономорфизмом и эпиморфизмом одновременно, то есть морфизм, на который можно сокращать как слева, так и справа[1], теоретико-категорное обобщение понятия биективного отображения.

Понятие биморфизма самодвойственно. Композиция биморфизмов является биморфизмом, таким образом, для данной категории определена подкатегория , состоящая из тех же объектов, и содержащая лишь морфизмы, являющиеся биморфизмами.

Любой изоморфизм является биморфизмом, но не любой биморфизм есть изоморфизм. Например, вложение кольца целых чисел в поле рациональных чисел в категории ассоциативных колец является биморфизмом, при этом необратимым, то есть, изоморфизмом не являющимся[2]. Если биморфизм представлен в виде , то  — мономорфизм, а  — эпиморфизм[3].

Сбалансированная категория — категория, в которой каждый биморфизм является изоморфизмом[1], таковы, например, категория множеств и категория групп. Категория колец, категория топологических пространств, категория абелевых групп без кручения — несбалансированные.

Примечания[править | править код]

  1. 1 2 Horst Schubert. 3.5 Bimorphisms // Categories. — Springer, 2012. — С. 34—35. — ISBN 9783642653643.
  2. Общая алгебра, 1991, с. 377—378.
  3. Цаленко, Шульгейфер, 1974, с. 30.

Литература[править | править код]

  • Биморфизм — статья из Математической энциклопедии. И. В. Долгачёв, М. Ш. Цаленко
  • Шульгейфер Е. Г. . Глава VII. Категории // Общая алгебра / Под общ. ред. Л. А. Скорнякова. — М.: Наука, 1991. — Т. 2. — С. 368—460. — 480 с. — (Справочная математическая библиотека). — 25 000 экз. — ISBN 5-9221-0400-4.
  • М. Ш. Цаленко, Е. Г. Шульгейфер. Основы теории категорий. — М.: Наука, 1974. — 256 с.