Буран (космический корабль)

Материал из Википедии — свободной энциклопедии
Перейти к: навигация, поиск
Буран
Buran.jpg
Старт комплекса «Энергия — Буран» 15 ноября 1988 года с космодрома Байконур
Общие данные
Разработчик

Союз Советских Социалистических Республик НПО «Молния»

Производитель

Союз Советских Социалистических Республик Тушинский машиностроительный завод

Страна

Союз Советских Социалистических Республик СССР

Назначение

Многоразовый транспортный космический корабль

Экипаж

до 10 чел.

Производство и эксплуатация
Статус

программа остановлена

Всего запущено

1

Первый запуск

15 ноября 1988 года

Последний запуск

15 ноября 1988 года

Ракета-носитель

Энергия

Стартовая площадка

площадка 110, Байконур; посадка: аэродром «Юбилейный», Байконур

Типичная конфигурация
Стартовая масса

105 т (без РН)

Габариты
Длина

36,4 м (без РН)

Ширина

24 м (размах крыла)

Высота

более 16 м (с шасси)

Полезный объём

свыше 70 м3

Commons-logo.svg Буран на Викискладе

«Буран» — орбитальный корабль-ракетоплан советской многоразовой транспортной космической системы (МТКК), созданный в рамках программы «Энергия — Буран». Один из двух реализованных в мире орбитальных кораблей МТКК.

«Буран» предназначался для:

  • выведения на орбиты, обслуживание на них и возвращение на землю космических аппаратов, космонавтов и грузов
  • проведения военно-прикладных исследований и экспериментов в обеспечение создания больших космических систем с использованием оружия на известных и новых физических принципах;
  • решения целевых задач в интересах народного хозяйства, науки и обороны;
  • комплексного противодействия мероприятиям вероятного противника по расширению использования космического пространства в военных целях;[1].

Первый и единственный космический полёт «Буран» совершил 15 ноября 1988 года. Ряд технических решений, полученных при создании «Бурана», до сих пор используются в российской и зарубежной ракетно-космической технике[2].

История[править | править вики-текст]

На авиасалоне в Ле-Бурже, 1989 год

Ан-225 и «Буран»…

В апреле 1973 года в ВПК с привлечением головных институтов (ЦНИИМаш, НИИТП, ЦАГИ, ВИАМ, 50 ЦНИИ, 30 ЦНИИ) был разработан и разослан на рассмотрение и согласование в МОМ, МАП и МО СССР и ряд других смежных министерств проект Решения ВПК по проблемам, связанным с созданием многоразовой космической системы. В правительственном Постановлении № П137/VII от 17 мая 1973 года, помимо организационных вопросов, содержался пункт, обязывающий «министра С. А. Афанасьева и В. П. Глушко подготовить в четырёхмесячный срок предложения о плане дальнейших работ».

Тактико-техническое задание на разработку многоразовой космической системы выдано Главным управлением космических средств Министерства обороны СССР и утверждено Д. Ф. Устиновым 8 ноября 1976 года. В том же году головным разработчиком корабля стало специально созданное НПО «Молния». Новое объединение возглавил Глеб Евгеньевич Лозино-Лозинский, уже в 1960-е годы работавший над проектом многоразовой авиационно-космической системы «Спираль».

Производство орбитальных кораблей осуществлялось на Тушинском машиностроительном заводе с 1980 года; к 1984 году был готов первый полномасштабный экземпляр. С завода корабли доставлялись водным транспортом (на барже под тентом) в город Жуковский, а оттуда (с аэродрома Раменское) — воздушным транспортом (на специальном самолёте-транспортировщике ВМ-Т) — на аэродром «Юбилейный» космодрома Байконур.

В 1984 году в ЛИИ им. М. М. Громова были сформированы экипажи для испытания аналога «Бурана» — БТС-02 которые проводились вплоть до 1988 года. Эти же экипажи планировались и для 1-го пилотируемого полёта «Бурана».

Основной экипаж:

Дублирующий экипаж:

Аэродромы и лётные испытания[править | править вики-текст]

Для посадок космоплана «Буран» был специально построен аэродром «Юбилейный» на Байконуре с усиленной ВПП размерами 4500x84 м (основной аэродром посадки — «Посадочный комплекс орбитального корабля» [3]). Кроме того, были подготовлены два запасных аэродрома для «Бурана» [4]:

На этих трёх аэродромах (и в их районах) были развёрнуты Комплексы радиотехнических систем навигации, посадки, контроля траектории и управления воздушным движением «Вымпел» для обеспечения штатной посадки «Бурана» (в автоматическом и ручном режиме).

По некоторым данным, с целью обеспечения готовности к вынужденной посадке «Бурана» (в ручном режиме) построены или усилены ВПП ещё на четырнадцати аэродромах, в том числе вне территории СССР (на Кубе, в Ливии).

Полноразмерный аналог «Бурана», имевший обозначение БТС-002(ГЛИ), был изготовлен для лётных испытаний в атмосфере Земли. В его хвостовой части стояли четыре турбореактивных двигателя, позволявшие ему взлетать с обычного аэродрома. В 1985—1988 годах его использовали в ЛИИ им. М. М. Громова (город Жуковский, Московская область) для отработки системы управления и системы автоматической посадки, а также для подготовки лётчиков-испытателей перед полётами в космос.

10 ноября 1985 года в ЛИИ имени Громова Минавиапрома СССР совершил первый атмосферный полёт полноразмерный аналог «Бурана» (машина 002 ГЛИ — горизонтальные лётные испытания). Пилотировали машину лётчики-испытатели ЛИИ Игорь Петрович Волк и Р. А. Станкявичюс.

Ранее приказом Минавиапрома СССР от 23 июня 1981 года № 263 был создан Отраслевой отряд космонавтов-испытателей Минавиапрома СССР в составе: Волк И. П., Левченко А. С., Станкявичюс Р. А. и Щукин А. В. (первый набор).

Silk-film.png Внешние видеофайлы
Silk-film.png Logo YouTube por Hernando.svg Лётные испытания БТС-002.

Полёт[править | править вики-текст]

Images.png Внешние изображения
Image-silk.png Детальный план полёта «Бурана» 15 ноября 1988 года

Космический полёт «Бурана» состоялся 15 ноября 1988 года. Ракета-носитель «Энергия», стартовавшая с площадки 110 космодрома Байконур вывела корабль на околоземную орбиту. Полёт длился 205 минут, за это время корабль совершил два витка вокруг Земли, после чего произвёл посадку на аэродроме «Юбилейный» космодрома Байконур.

Полёт происходил в автоматическом режиме с использованием бортового компьютера и бортового программного обеспечения[6]. Над акваторией Тихого океана «Буран» сопровождали корабль измерительного комплекса ВМФ СССР «Маршал Неделин» и научно-исследовательское судно АН СССР «Космонавт Георгий Добровольский».

На этапе посадки не обошлось без чрезвычайного происшествия, которое, однако, в результате только подчеркнуло успех создателей программы. На высоте порядка 11 км «Буран», получивший с наземной станции информацию о погодных условиях в месте посадки, неожиданно для всех совершил резкий манёвр. Корабль описал плавную петлю с разворотом на 180º (изначально заходя на посадочную полосу с северо-западного направления, корабль сел, зайдя со стороны её южного конца). Как позже выяснилось, из-за штормового ветра на земле автоматика корабля приняла решение дополнительно погасить скорость и зайти по наиболее выгодной в новых условиях траектории посадки.

В момент разворота корабль пропал из поля зрения наземных средств наблюдения, связь на некоторое время прервалась. В ЦУПе началась паника, ответственные лица немедленно предложили задействовать аварийную систему подрыва корабля (на нём были установлены тротиловые заряды, предусмотренные для недопущения крушения сверхсекретного корабля на территории другого государства в случае потери курса). Однако, заместитель Главного конструктора НПО «Молния» по лётным испытаниям Степан Микоян, отвечавший за управление кораблём на участке снижения и посадки, принял решение подождать, и ситуация разрешилась благополучно.[7]

Изначально система автоматической посадки не предусматривала перехода на ручной режим управления. Однако пилоты-испытатели и космонавты потребовали у конструкторов включить ручной режим в систему управления посадкой[8]:

…система управления корабля «Буран» должна была выполнять автоматически все действия вплоть до остановки корабля после посадки. Участие лётчика в управлении не предусматривалось. (Позже, по нашему настоянию предусмотрели всё-таки резервный ручной режим управления на атмосферном участке полёта при возврате корабля.)

С. А. Микоян

Значительная часть технической информации о ходе полёта недоступна современному исследователю, так как была записана на магнитных лентах для компьютеров БЭСМ-6, исправных экземпляров которых не сохранилось. Частично воссоздать ход исторического полёта можно по сохранившимся бумажным рулонам распечаток на АЦПУ-128 с выборками из данных бортовой и наземной телеметрии[9].

Последующие события[править | править вики-текст]

В 1990 году работы по программе «Энергия-Буран» были приостановлены, а 25 мая 1993 года[10] программа окончательно закрыта Решением Совета главных конструкторов при НПО «Энергия». При этом, существует мнение, что официального закрытия как такового не было — якобы, прекратить эту программу может только президент РФ[11].

В 2002 году единственный летавший в космос «Буран» (изделие 1.01) был разрушен при обрушении крыши монтажно-испытательного корпуса на Байконуре, в котором он хранился вместе с готовыми экземплярами ракеты-носителя «Энергия».

После катастрофы космического корабля «Колумбия», и в особенности с закрытием программы «Спейс шаттл», в западных СМИ неоднократно высказывалось мнение о том, что американское космическое агентство NASA заинтересовано в возрождении комплекса «Энергия-Буран» и предполагает сделать соответствующий заказ России в ближайшее время. Между тем, по сообщению агентства «Интерфакс», директор ЦНИИМаш Г. Г. Райкунов заявил, что Россия может вернуться после 2018 года к этой программе и созданию ракет-носителей, способных выводить на орбиту груз до 24 тонн; испытания её будут начаты в 2015 году. В дальнейшем предполагается создание ракет, которые будут доставлять на орбиту грузы весом более 100 тонн. На отдалённое будущее имеются планы по разработке нового пилотируемого космического корабля и многоразовых ракет-носителей.[12][13][14]

Технические характеристики[править | править вики-текст]

Буран - Донор.svg
  • Длина — 36,4 м,
  • Размах крыла — около 24 м,
  • Высота корабля, стоящего на шасси, — более 16 м,
  • Стартовая масса — 105 т,
  • Грузовой отсек вмещает полезный груз массой до 30 тонн при взлёте, до 20 тонн при посадке.

В носовой отсек Бурана вставлена герметичная цельносварная кабина для экипажа, для проведения работ на орбите (до 10 человек) и большей части аппаратуры, для обеспечения полёта в составе ракетно-космического комплекса, автономного полёта на орбите, спуска и посадки. Объём кабины составляет свыше 70 м3.

Images.png Внешние изображения
Image-silk.png Чертёж «Спейс Шаттла» (52 Мб)

Буран имеет треугольное крыло с двойной стреловидностью, а также аэродинамические органы управления, работающие после возвращения в плотные слои атмосферы и при посадке — руль направления, элевоны и аэродинамический щиток.

Две группы двигателей для маневрирования размещены в конце хвостового отсека и передней части корпуса. Выполняется манёвр возврата или выхода на одновитковую траекторию.

Впервые в практике двигателестроения была создана объединённая двигательная установка, включающая топливные баки окислителя и горючего со средствами заправки, термостатирования, наддува, забора жидкости в невесомости, аппаратурой системы управления и так далее.

Бортовой комплекс управления состоит примерно из пятидесяти программных систем, на базе компьютера IBM System/370. Часть системных команд из IBM-набора S/370 не была реализована, в то же время было добавлено много оригинальных команд общего назначения, не имеющих аналогов в IBM-наборе. На борту корабля находилось два комплекта БЦВМ «Бисер-4» по четыре аппаратно-параллельных компьютера и аппаратного компаратора, допускающего автоматическое отключение подряд двух компьютеров в случае аварийных результатов (4 основных + 4 резерв). Кстати, КК «Space Shuttle» имеет только программное резервирование.

При разработке программного обеспечения (ПО) для наземных систем космического корабля использовались технология структурного проектирования программ с использованием языка ДИПОЛЬ, а для решения задач моделирования использовался язык ЛАКС. ПО БЦВМ и Операционная Система (ОС) были написаны на языках ПРОЛ2 (по мотивам языка ПРОЛОГ) и Assembler/370. В разработке ПО было широко использована концепция R-технологии (R-машина и R-язык), с использованием системы автоматизации программирования и отладки САПО. Применение компьютерных технологий, разработанных в СССР, позволило в короткие сроки разработать программные комплексы объёмом около 100 Мб. В случае отказов ракетных блоков первой и второй ступеней ракеты-носителя система управления орбитального корабля обеспечивает его аварийное возвращение на землю в автоматическом режиме.

Первостепенное значение для успешного преодоления гравитационно обусловленных термических и пневматических нагрузок, возникающих при прохождении корабля в плотных слоях атмосферы, имеет его защитная обшивка.[15] Ряд научно-исследовательских организаций страны получил задание по разработке огнеупорных материалов, соответствующих в характеристиках стойкости этим экстремальным техническим условиям. Институту химии силикатов (Санкт-Петербург), в числе других учреждений выполнявшему эти работы, была доверена роль их координации, а общее руководство осуществлял выдающийся физико-химик М. М. Шульц.[16][17]

Одним из многочисленных специалистов по теплозащитному покрытию был музыкант Сергей Летов[18].

Сравнительный анализ систем «Буран» и «Спейс шаттл»[править | править вики-текст]

При внешнем сходстве с американским «Шаттлом» орбитальный корабль «Буран» имел принципиальное отличие — он мог совершать посадку полностью в автоматическом режиме с использованием бортового компьютера и наземного Комплекса радиотехнических систем навигации, посадки, контроля траектории и управления воздушным движением «Вымпел».

«Союз», «Спейс шаттл» и «Энергия-Буран»― сравнение

Комплекс «Спейс шаттл» состоит из топливного бака (сигарообразный объект красного цвета по центру), двух твердотопливных ускорителей и самого космического челнока. За 6,6 секунды до момента старта (отрыва от стартового стола) запускаются три маршевых разгонных кислородно-водородных двигателя RS-25, размещённых на самом орбитальном ракетоплане (вторая ступень), а уже затем (в момент старта) — оба ускорителя (первая ступень), одновременно с подрывом крепёжных пироболтов.

«Шаттл» садится с неработающими двигателями. Он не имеет возможности несколько раз заходить на посадку, поэтому предусмотрено несколько посадочных площадок на территории США.

«Буран»: название комплекса «Энергия — Буран». Комплекс состоял из первой ступени, представлявшей собой четыре боковых блока с кислород-керосиновыми двигателями РД-170 (в перспективе предусматривалось их возвращение и многоразовое использование), второй ступени с четырьмя кислород-водородными двигателями РД-0120 являющейся основой комплекса и пристыкованного к ней возвращаемого космического аппарата «Буран». При старте запускались обе ступени. После сброса первой ступени (4 боковых блока) вторая продолжала работать до достижения скорости чуть менее орбитальной. Довывод осуществлялся двигателями самого «Бурана», этим исключалось загрязнение орбит обломками отработанных ступеней ракеты.

Данная схема универсальна, поскольку позволяла осуществлять вывод на орбиту не только МТКК «Буран», но и других полезных грузов массой до 100 тонн. «Буран» входил в атмосферу и начинал гасить скорость (угол входа примерно 30°, постепенно угол входа уменьшался). Первоначально для управляемого полёта в атмосфере «Буран» должен был оснащаться двумя ТРД, устанавливаемыми в зоне аэродинамической тени в основании киля. Однако к моменту первого (и единственного) старта данная система не была готова к полёту, поэтому после входа в атмосферу корабль управлялся только рулевыми поверхностями без использования тяги двигателей. Перед приземлением «Буран» осуществил гасящий скорость корректирующий манёвр (полёт по нисходящей восьмёрке), после чего шёл на посадку. В этом единственном полёте у «Бурана» была лишь одна попытка для захода на посадку. При посадке скорость составляла 300 км/ч, во время входа в атмосферу доходила до 25 скоростей звука (почти 30 тысяч км/ч).

В отличие от «Шаттлов», в «Буране» была предусмотрена система экстренного спасения экипажа. На малых высотах работала катапульта для первых двух пилотов; на достаточной высоте, в случае нештатной ситуации, «Буран» мог отделяться от ракеты-носителя и совершать экстренную посадку.

Главные конструкторы «Бурана» никогда не отрицали, что «Буран» был частично скопирован с американского «Спейс шаттла». В частности, генеральный конструктор Лозино-Лозинский высказался на вопрос о копировании следующим образом:[19]

Генеральный конструктор Глушко посчитал, что к тому времени было мало материалов, которые бы подтверждали и гарантировали успех, в то время, когда полёты «Шаттла» доказали, что подобная «Шаттлу» конфигурация работает успешно, и здесь риск при выборе конфигурации меньше. Поэтому, несмотря на больший полезный объём конфигурации «Спирали», было принято решение выполнять «Буран» по конфигурации, подобной конфигурации «Шаттла».

…Копирование, как это указано в предыдущем ответе, было, безусловно, совершенно сознательным и обоснованным в процессе тех конструкторских разработок, которые проводились, и в процессе которых было внесено, как уже было указано выше, много изменений и в конфигурацию, и в конструкцию. Основным политическим требованием было обеспечение габаритов отсека полезного груза, одинакового с отсеком полезного груза «Шаттла».

…отсутствие маршевых двигателей на «Буране» заметно меняло центровку, положение крыльев, конфигурацию наплыва, ну, и целый ряд других отличий.

Разгонный двигатель «Бурана» 17Д12

Под отсутствующими маршевыми двигателями генеральный конструктор Лозино-Лозинский понимал именно разгонные двигатели. Но на «Буране» присутствовали маршевые доразгонные двигатели объединённой двигательной установки (ОДУ), обеспечивавшие довыведение корабля на орбиту после отделения от ракеты-носителя, орбитальные манёвры и торможение перед сходом с орбиты.[20] У «Шаттла» подобными доразгонными двигателями являлись двигатели системы орбитального маневрирования.

Причины и следствия различий систем[править | править вики-текст]

Первоначальный вариант ОС-120, появившийся в 1975 году в томе 1Б «Технические предложения» «Комплексной ракетно-космической программы», был практически полной копией американского спейс шаттла — в хвостовой части корабля размещались три маршевых кислородно-водородных двигателя (11Д122 разработки КБЭМ тягой по 250 т. с. и удельным импульсом 353 сек на земле и 455 сек в вакууме) с двумя выступающими мотогондолами для двигателей орбитального маневрирования.

Ключевым вопросом оказались двигатели, которые должны были быть по всем основным параметрам равными или превосходить характеристики бортовых двигателей американского орбитального корабля SSME и боковые твердотопливные ускорители.

Двигатели, созданные в воронежском КБ химавтоматики, оказались по сравнению с американским аналогом:

  • тяжелее (3450 против 3117 кг),
  • немного больше по габаритам (диаметр и высота: 2420 и 4550 против 1630 и 4240 мм),
  • с несколько меньшей тягой (на уровне моря: 156 против 181 т. с.), хотя по удельному импульсу, характеризующему эффективность двигателя, несколько его превосходили.

При этом весьма существенной проблемой было обеспечение многоразового использования этих двигателей. Для примера, изначально создававшиеся как многоразовые двигатели Спейс шаттла в итоге требовали такого большого объёма весьма дорогостоящих межпусковых регламентных работ, что экономически «Шаттл» полностью не оправдал возлагавшихся надежд по снижению стоимости выведения килограмма груза на орбиту.

Известно, что для вывода на орбиту одинаковой полезной нагрузки с космодрома Байконур, по географическим причинам, нужно иметь большую тягу, чем с космодрома на мысе Канаверал. Для старта системы «Спейс шаттл» используются два твердотопливных ускорителя с тягой по 1280 т. с. каждый (самые мощные ракетные двигатели в истории), с суммарной тягой на уровне моря 2560 т. с., плюс общая тяга трёх двигателей SSME 570 т. с., что вместе создает тягу при отрыве от стартового стола 3130 т. с. Этого достаточно, чтобы с космодрома Канаверал вывести на орбиту полезную нагрузку до 110 тонн, включающую сам челнок (78 тонн), до 8 астронавтов (до 2 тонн) и до 29,5 тонн груза в грузовом отсеке. Соответственно, для вывода на орбиту 110 тонн полезной нагрузки с космодрома Байконур, при прочих равных условиях, требуется создать тягу при отрыве от стартового стола примерно на 15 % больше, то есть около 3600 т. с.

Советский орбитальный корабль ОС-120 (ОС означает «орбитальный самолёт») должен был иметь вес 120 тонн (добавить к весу американского челнока два турбореактивных двигателя для полётов в атмосфере и систему катапультирования двух пилотов в аварийной ситуации).[21] Простой расчёт показывает, что для вывода на орбиту полезной нагрузки в 120 тонн требуется тяга на стартовом столе более 4000 т. с.

В то же время получалось, что тяга маршевых двигателей орбитального корабля, если использовать аналогичную конфигурацию челнока с 3 двигателями, уступает американскому (465 т. с. против 570 т. с.), что совершенно недостаточно для второй ступени и довывода челнока на орбиту. Вместо трёх двигателей нужно было ставить 4 двигателя РД-0120, но в конструкции планера орбитального корабля запаса места и веса не было. Конструкторам пришлось резко снижать вес челнока.

Так родился проект орбитального корабля ОК-92, вес которого был снижен до 92 тонн за счёт отказа от размещения маршевых двигателей вместе с системой криогенных трубопроводов, их запирания при отделении внешнего бака и т. д. В результате проработки проекта, четыре (вместо трёх) двигателя РД-0120 были перенесены из хвостовой части фюзеляжа орбитального корабля в нижнюю часть топливного бака. Тем не менее, в отличие от Шаттла, неспособного совершать столь активные орбитальные манёвры, Буран был оснащён двигателями маневрирования тягой 16 тонн, что позволяло ему при необходимости менять орбиту в широких пределах.

9 января 1976 года генеральный конструктор НПО «Энергия» Валентин Глушко утвердил «Техническую справку», содержащую сравнительный анализ нового варианта корабля «ОК-92».

После выхода постановления № 132-51, разработку планера орбитера, средств воздушной транспортировки элементов МКС и системы автоматической посадки поручили специально организованному НПО «Молния», которое возглавил Глеб Евгеньевич Лозино-Лозинский.

Изменения коснулись и боковых ускорителей. В СССР не имелось опыта проектирования, необходимой технологии и оборудования для производства таких больших и мощных твердотопливных ускорителей, которые используются в системе спейс шаттл и обеспечивают 83 % тяги на старте. Более суровый климат требовал более сложных химических веществ для работы в более широком температурном диапазоне, твердотопливные ускорители создавали опасные вибрации, не допускали управления тягой и разрушали озоновый слой атмосферы своим выхлопом. Кроме этого, двигатели на твёрдом топливе уступают по удельной эффективности жидкостным — а СССР требовалось в связи с географическим положением космодрома Байконур для вывода равной по ТЗ Шаттлу полезной нагрузки большая эффективность. Конструкторы НПО «Энергия» приняли решение использовать самый мощный из имеющихся ЖРД — двигатель, созданный под руководством Глушко, четырёхкамерный РД-170, который мог развивать тягу (после доработки и модернизации) 740 т. с. Однако пришлось вместо двух боковых ускорителей по 1280 т. с. использовать четыре по 740. Суммарная тяга боковых ускорителей вместе с двигателями второй ступени РД-0120 при отрыве от стартового стола достигла 3425 т. с., что примерно равно стартовой тяге системы «Сатурн-5» с кораблями «Аполлон» (3500 т. с.).

Возможность повторного использования боковых ускорителей была ультимативным требованием заказчика — ЦК КПСС и министерства обороны в лице Д. Ф. Устинова. Официально считалось, что боковые ускорители являются многоразовыми, однако в тех двух полётах «Энергии», которые имели место, задача сохранения боковых ускорителей даже не ставилась. Американские ускорители опускаются на парашютах в океан, что обеспечивает довольно «мягкую» посадку, щадящую двигатели и корпуса ускорителей. К сожалению, в условиях старта из казахстанской степи нет шансов провести «приводнение» ускорителей, а парашютная посадка в степи недостаточно мягкая для сохранения двигателей и корпусов ракет. Планирующая, либо парашютная с пороховыми двигателями посадка хоть и проектировались, но не была реализована в первых двух испытательных полетах, а дальнейшие разработки в этом направлении, включая спасение блоков как первой, так и второй ступени с помощью крыльев, не были осуществлены вследствие закрытия программы.

Изменения, ставшие отличиями системы «Энергия — Буран» от системы «Спейс шаттл», имели следующие результаты:

  • в системе «Энергия — Буран» многоразовым элементом в первом полете был лишь сам орбитальный корабль, а блоки первой ступени и центральный блок утрачивались в процессе запуска.[22]
  • с другой стороны, была создана универсальная транспортная космическая система, позволявшая, в отличие от американцев, выводить в космос не только «Буран», но и произвольные тяжёлые грузы массой до 100 тонн, в то время у США челнок является неотъемлемой частью транспортной системы и груз ограничен 29,5 тоннами, причём из-за особенностей центровки орбитального корабля ни одного полета с полной загрузкой так и не было совершено. В США существовали планы создания одноразовой только грузовой системы на базе Шаттла (Shuttle-C), но они не были реализованы.

Военно-политическая система[править | править вики-текст]

По мнению зарубежных специалистов «Буран» был ответом на аналогичный американский проект «Спейс шаттл» и задумывался как военная система[23], которая, впрочем, была ответом на, как тогда считали, планировавшееся применение в военных целях американских шаттлов[24].

Программа имеет свою предысторию:[25]

В 1972 г. Никсон объявил, что в США начинает разрабатываться программа «Space Shuttle». Она была объявлена как национальная, рассчитанная на 60 пусков челнока в год, предполагалось создать 4 таких корабля; затраты на программу планировались в 5 миллиардов 150 миллионов долларов в ценах 1971 г.

Челнок выводил на околоземную орбиту 29,5 т и мог спускать с орбиты груз до 14,5 т. Вес, выводимый на орбиту при помощи одноразовых носителей в Америке, даже не достигал 150 т/год, а тут задумывалось в 12 раз больше; ничего с орбиты не спускалось, а тут предполагалось возвращать 820 т/год… Это была не просто программа создания какой-то космической системы под девизом снижения затрат на транспортные расходы (наши, нашего института проработки показали, что никакого снижения фактически не будет наблюдаться), она имела явное целевое военное назначение.

— Директор Центрального НИИ машиностроения Ю. А. Мозжорин

Многоразовые космические системы имели в СССР как сильных сторонников, так и авторитетных противников. Желая окончательно определиться с МКС, ГУКОС решил выбрать авторитетного арбитра в споре военных с промышленностью, поручив головному институту Минобороны по военному космосу (ЦНИИ 50) провести научно-исследовательскую работу (НИР) по обоснованию необходимости МКС для решения задач по обороноспособности страны. Но и это не внесло ясности, так как генерал Мельников, руководивший этим институтом, решив подстраховаться, выпустил два «отчёта»: один — в пользу создания МКС, другой — против. В конце концов оба этих отчёта, обросшие многочисленными авторитетными «Согласовано» и «Утверждаю», встретились в самом неподходящем месте — на столе Д. Ф. Устинова. Раздражённый результатами «арбитража», Устинов позвонил Глушко и попросил ввести его в курс дела, представив подробную информацию по вариантам МКС, но Глушко неожиданно отправил на встречу с секретарём ЦК КПСС, кандидатом в члены Политбюро, вместо себя — Генерального конструктора — своего сотрудника, и. о. начальника 162 отдела Валерия Бурдакова.

Приехав в кабинет Устинова на Старой площади, Бурдаков стал отвечать на вопросы секретаря ЦК. Устинова интересовали все подробности: зачем нужна МКС, какой она может быть, что нам для этого нужно, зачем в США создают свой шаттл, чем это нам грозит. Как впоследствии вспоминал Валерий Павлович, Устинова интересовали в первую очередь военные возможности МКС, и он представил Д. Ф. Устинову своё видение использования орбитальных челноков как возможных носителей термоядерного оружия, которые могут базироваться на постоянных военных орбитальных станциях в немедленной готовности к нанесению сокрушительного удара в любой точке планеты[26].

Перспективы МКС, представленные Бурдаковым, настолько глубоко взволновали и заинтересовали Д. Ф. Устинова, что он в кратчайший срок подготовил решение, которое было обсуждено в Политбюро, утверждено и подписано Л. И. Брежневым[27][28], а тема многоразовой космической системы получила максимальный приоритет среди всех космических программ в партийно-государственном руководстве и ВПК.

Чертежи и фотографии шаттла были впервые получены в СССР по линии ГРУ в начале 1975 года[29][30]. Сразу же были проведены две экспертизы на военную составляющую: в военных НИИ и в Институте прикладной математики под руководством Мстислава Келдыша. Выводы: «будущий корабль многоразового использования сможет нести ядерные боеприпасы и атаковать ими территорию СССР практически из любой точки околоземного космического пространства» и «Американский шаттл грузоподъёмностью 30 тонн в случае его загрузки ядерными боеголовками способен совершать полеты вне зоны радиовидимости отечественной системы предупреждения о ракетном нападении. Совершив аэродинамический манёвр, например, над Гвинейским заливом, он может выпустить их по территории СССР» — подтолкнули руководство СССР к созданию ответа — «Бурана»[31].

И говорят, что мы будем туда летать раз в неделю, понимаете… А целей и грузов нет, и сразу возникает опасение, что они создают корабль под какие-то будущие задачи, про которые мы не знаем. Возможно применение военное? Безусловно.

— Вадим Лукашевич — историк космонавтики, кандидат технических наук[31]

И вот они это продемонстрировали на том, что над Кремлём они прошлись на «Шаттле», вот это был всплеск наших военных, политиков, и так было принято решение в одно время: отработка методики перехвата космических целей, высоких, с помощью самолётов.

Магомед Толбоев, Герой России Заслуженный лётчик-испытатель РФ[31]

К 1 декабря 1988 года был по крайней мере один засекреченный запуск «Шаттла» с военными задачами (номер полета по кодификации НАСА — STS-27)[32]. В 2008 году стало известно, что во время полёта по заданию NRO и ЦРУ был выведен на орбиту всепогодный разведывательный спутник Lacrosse 1 (англ.), который делал снимки в радиодиапазоне способом радиолокации[33][34].

В США заявляли, что система «Спейс шаттл» создавалась в рамках программы гражданской организации — НАСА. Целевая космическая группа под руководством вице-президента С. Агню в 1969—1970 годах разработала несколько вариантов перспективных программ мирного освоения космического пространства после окончания лунной программы[35]. В 1972 году Конгресс, основываясь на экономическом анализе,[36] поддержал проект создания многоразовых челноков взамен одноразовых ракет.

Перечень изделий[править | править вики-текст]

Летавший в космос «Буран» 1.01 на выставке в Ле-Бурже, 1989 год
«Байкал» 2.01 в ЛИИ им. Громова

К моменту закрытия программы (начало 1990-х годов) было построено или велось строительство пяти лётных экземпляров корабля «Буран»:

Перечень макетов[править | править вики-текст]

В ходе работы над проектом «Буран» было изготовлено несколько макетных образцов для динамических, электрических, аэродромных и прочих испытаний. После закрытия программы эти изделия остались на балансе различных НИИ и производственных объединений. Известно, например, о наличии макетных образцов у ракетно-космической корпорации «Энергия» и у НПО «Молния».

  • БТС-001 ОК-МЛ-1 (изделие 0.01) использовался для отработки воздушной транспортировки орбитального комплекса. В 1993 году полноразмерный макет был передан в лизинг обществу «Космос — Земля» (президент — космонавт Герман Титов). До июня 2014 года был установлен на Пушкинской набережной Москвы-реки в Центральном парке культуры и отдыха им. Горького. По состоянию на декабрь 2008 года в нём был организован научно-познавательный аттракцион. В ночь с 5 по 6 июля 2014 года макет перемещён на территорию ВДНХ[47][48][49] к празднованию 75-летия ВДНХ.
  • ОК-КС (изделие 0.03) является полноразмерным комплексным стендом. Использовался для отработки воздушной транспортировки, комплексной отработки ПО, электро-радиотехнические испытания систем и оборудования. До 2012 года находился в корпусе контрольно-испытательной станции РКК «Энергия», город Королёв. Был перемещён на прилегающую к корпусу центра территорию, где сейчас проходит консервацию. [50]. Отправится в Сочи.
  • ОК-МЛ1 (изделие 0.04) применялся для габаритных и весовых примерочных испытаний. Находится в музее космодрома Байконур.
  • ОК-ТВА (изделие 0.05) применялся для тепло-вибро-прочностных испытаний. Находится в ЦАГИ. По состоянию на 2011 год все отсеки макетов уничтожены, за исключением левого крыла со стойкой шасси и со штатной теплозащитой, которые были включены в состав макета орбитального корабля.
  • ОК-ТВИ (изделие 0.06) являлся моделью для тепло-вакуумных испытаний. Располагается в НИИХимМаш, г. Пересвет Московской области.
  • ОК-МТ (изделие 0.15) использовался для отработки предстартовых операций (заправка корабля, примерочно-стыковочных работ и др.). В настоящее время находится на площадке Байконура 112А, (45°55′10″ с. ш. 63°18′36″ в. д.HGЯO) в сооружении 80, вместе с изделием 1.02 «Буря». Является собственностью Казахстана.
  • (изделие 0.08) — макет представляет собой только модель кабины с аппаратной начинкой. Использовался для отработки надёжности катапультируемых кресел. После окончания работ находился на территории 29-й клинической больницы в Москве, затем был перевезён в подмосковный Центр подготовки космонавтов. В настоящее время находится на территории 83-й клинической больницы ФМБА (с 2011 — Федеральный научно-клинический центр специализированных видов медицинской помощи и медицинских технологий ФМБА).

В филателии[править | править вики-текст]

В культуре[править | править вики-текст]

  • В 1991 г. вышла советская фантастическая комедия «Абдулладжан, или Посвящается Стивену Спилбергу», режиссёра Зульфикара Мусакова, о приключении пришельца в узбекском кишлаке. В начале фильма показан старт и совместный полет американского шаттла и советского "Бурана".
  • Buran — игра на MSX, 1990 года [1]
  • Собрать Буран — игра на ПК Байт, 1989 года [2]

См. также[править | править вики-текст]

Примечания[править | править вики-текст]

  1. Применение Бурана
  2. Выступление Ген. конст. НПО «Молния» Г. Е. Лозино-Лозинского на научно-практической выставке-конференции «„Буран“ — прорыв к сверхтехнологиям», 1998
  3. Посадочный комплекс космодрома Байконур
  4. Запасные аэродромы для «Бурана»
  5. Схема размещения в Крыму объектов Комплекса радиотехнических систем навигации, посадки, контроля траектории и управления воздушным движением «Вымпел»
  6. В отличие от американского «Шаттла», который традиционно совершает предпосадочные манёвры и посадку на ручном управлении (вход в атмосферу и торможение до скорости звука в обоих случаях полностью компьютеризованы). Данный факт — полёт космического аппарата в космос и спуск его на Землю в автоматическом режиме под управлением бортового компьютера — вошёл в книгу рекордов Гиннесса.
  7. Полёт орбитального корабля 11Ф35 «Буран»
  8. Микоян С. А. Глава 28. На новой работе // Мы — дети войны. Воспоминания военного лётчика-испытателя. — М.: Яуза, Эксмо, 2006. — С. 549—566.
  9. А. Рудой. Счищая плесень с цифр // Компьютерра, 2007
  10. http://www.buran.ru/other/sgk_245-25_05-93.pdf
  11. «Буран» вновь понадобится для обороны России
  12. Russia To Review Its Space Shuttle Project / Propulsiontech’s Blog
  13. Douglas Birch. Russian space program is handed new responsibility. Sun Foreign (2003). Проверено 17 октября 2008. Архивировано 22 августа 2011 года.
  14. Russia To Review Its Space Shuttle Project. Space Daily (???). Проверено 28 июля 2010. Архивировано 15 октября 2012 года.
  15. Соприкосновение любого космического тела с атмосферой при ускорении сопровождается ударной волной, воздействие которой на потоки газов выражается увеличением их температуры, плотности и давления — образуются импульсно уплотняющиеся плазматические слои с температурой, повышающейся в геометрической прогрессии, и достигающей величин, которые способны без значительных изменений выдерживать только особые термостойкие силикатные материалы.
  16. Вестник Санкт-Петербургского университета; Серия 4. Выпуск 1. Март 2010. Физика, химия (химический раздел номера посвящён 90-летию М. М. Шульца)
  17. Михаил Михайлович Шульц. Материалы к библиографии учёных. РАН. Химические науки. Вып. 108. Издание второе, дополненное. — М.: Наука, 2004. — ISBN 5-02-033186-4
  18. Владимир Зобенко. Химия, космос, саксофон. Сергей Летов выступил в Актобе на Суховее. "Диапазон", Казахстан (9 августа 2016). — Интервью Сергея Летова. — «Я автор теплозащитного покрытия «Бурана». Это были 87-88 годы.». Проверено 15 ноября 2016.
  19. Отвечает Генеральный конструктор «Бурана» Глеб Евгеньевич Лозино-Лозинский
  20. В одной упряжке мороз и пламя / Авиация и космонавтика, № 1/1991 / Б. СОКОЛОВ, заместитель главного конструктора НПО «Энергия», доктор технических наук; А. САНИН, кандидат технических наук
  21. ОС-120
  22. Б. Губанов. Центральный блок Ц // Триумф и Трагедия Энергии
  23. Paul Marks. Cosmonaut: Soviet space shuttle was safer than NASA's (англ.) (7 July 2011). Архивировано 22 августа 2011 года.
  24. Четверть века без «Бурана»
  25. Путь к Бурану
  26. Применение «Бурана» — Боевые космические комплексы
  27. История создания многоразового орбитального корабля «Буран»
  28. Многоразовый орбитальный корабль ОК-92, ставший «Бураном»
  29. http://www.buran.ru/images/jpg/tsagi1.jpg
  30. http://www.buran.ru/images/jpg/markov.jpg
  31. 1 2 3 «Буран». Коммерсантъ № 213 (1616) (14 ноября 1998). Проверено 21 сентября 2010. Архивировано 22 августа 2011 года.
  32. Таинственный полет «Атлантиса»
  33. Vick C. Lacrosse/Onyx (англ.). GlobalSecurity.org (9 November 2008). Проверено 21 марта 2011.
  34. Lacrosse 1 (англ.). НАСА. Проверено 21 марта 2011.
  35. Agnew, Spiro, chairman. September 1969. The Post-Apollo Space Program: Directions for the Future. Space Task Group. Reprinted in NASA SP-4407, Vol. I, pp. 522—543
  36. 71-806. July 1971. Robert N. Lindley, The Economics of a New Space Transportation System
  37. Ralph Mirebs. В спальне бога. LiveJournal (3 июня 2015).
  38. Д. Мельников. «Буран» остался без крыльев и хвоста Вести.ру, 2 сентября 82010
  39. Тушинский машиностроительный завод, на котором строился космический челнок «Буран», открестился от своего детища ТРК Петербург — Пятый канал, 30 сентября 2010
  40. Остатки «Бурана» распродают по кускам РЕН-ТВ, 30 сентября 2010
  41. «Бурану» дадут шанс
  42. Гнивший в Тушино «Буран» приведут в порядок и покажут на авиасалоне
  43. Russian space shuttle in Port of Rotterdam (англ.)
  44. Конец одиссеи Бурана (14 фотографий)
  45. Д. Мельников. Конец одиссеи «Бурана» Вести.ру, 5 апреля 2008
  46. Советский шаттл «Буран» приплыл в немецкий музей Лента.ру, 12 апреля 2008
  47. «Буран» перевозят из московского парка им. Горького (фоторепортаж), 24 июня 2014
  48. Несколько троллейбусных и трамвайных маршрутов снимут из-за перевозки «Бурана»
  49. «Буран» перевезли из Парка Горького на ВДНХ (ВИДЕО)
  50. В РКК «Энергия» перемещается на новое место стендовый макет многоразового корабля «Буран» РКК «Энергия», 15 ноября 2012

Литература[править | править вики-текст]

Ссылки[править | править вики-текст]

Видео