Величина (математика)

Материал из Википедии — свободной энциклопедии
Перейти к: навигация, поиск

Величина — одно из основных математических понятий, смысл которого с развитием математики подвергался ряду обобщений.

История[править | править исходный текст]

Ещё в «Началах» Евклида (3 в. до н. э.) были отчётливо сформулированы свойства величины, называемых теперь, для отличия от дальнейших обобщений, положительными скалярными величинами. Это первоначальное понятие величины является непосредственным обобщением более конкретных понятий: длины, площади, объёма, массы и т. п. Каждый конкретный род величины связан с определённым способом сравнения физических тел или др. объектов. Например, в геометрии отрезки сравниваются при помощи наложения, и это сравнение приводит к понятию длины: два отрезка имеют одну и ту же длину, если при наложении они совпадают; если же один отрезок накладывается на часть другого, не покрывая его целиком, то длина первого меньше длины второго. Общеизвестны более сложные приёмы, необходимые для сравнения плоских фигур по площади или пространственных тел по объёму.

Свойства[править | править исходный текст]

В соответствии со сказанным, в пределах системы всех однородных величин (то есть в пределах системы всех длин или всех площадей, всех объёмов) устанавливается отношение порядка: две величины а и b одного и того же рода или совпадают (а = b), или первая меньше второй (а < b), или вторая меньше первой (b < a). Общеизвестно также в случае длин, площадей, объёмов и то, каким образом устанавливается для каждого рода величины смысл операции сложения. В пределах каждой из рассматриваемых систем однородных величин отношение а < b и операция а + b = с обладают следующими свойствами:

  1. Каковы бы ни были а и b, имеет место одно и только одно из трёх соотношений: или а = b, или а < b, или b < a
  2. Если а < b и b < c, то а < с (транзитивность отношений «меньше», «больше»)
  3. Для любых двух величин а и b существует однозначно определённая величина с = а+b
  4. а + b = b+ а (коммутативность сложения)
  5. а + (b + с) = (а + b)+ с (ассоциативность сложения)
  6. а + b > а(монотонность сложения)
  7. Если а > b, то существует одна и только одна величина с, для которой b + с = а (возможность вычитания)
  8. Каковы бы ни были величины а и натуральное число n, существует такая величина b, что nb = a (возможность деления)
  9. Каковы бы ни были величины а и b, существует такое натуральное число n, что а < nb. Это свойство называется аксиомой Евдокса, или аксиомой Архимеда. На нём вместе с более элементарными свойствами 1-8 основана теория измерения величин, развитая древнегреческими математиками.

Если взять какую-либо длину l за единичную, то система s' всех длин, находящихся в рациональном отношении к l, удовлетворяет требованиям 1-9. Существование несоизмеримых (см. Соизмеримые и несоизмеримые величины) отрезков (открытие которых приписывается Пифагору, 6 в. до н. э.) показывает, что система s' ещё не охватывает системы s всех вообще длин.

Чтобы получить вполне законченную теорию величин, к требованиям 1-9 надо присоединить ещё ту или иную дополнительную аксиому непрерывности, например:

10) Если последовательности величин a1<a2<… <…< b2<b1 обладают тем свойством, что bn - an < с для любой величины с при достаточно большом номере n, то существует единственная величина х, которая больше всех an и меньше всех bn.

Свойства 1-10 и определяют полностью современное понятие системы положительных скалярных величин. Если в такой системе выбрать какую-либо величину l за единицу измерения, то все остальные величины системы однозначно представляются в виде а = al, где а - положительное действительное число.

Другие подходы[править | править исходный текст]

Рассмотрение направленных отрезков на прямой, скоростей, могущих иметь два противоположных направления, и т. п. Величина естественно приводит к тому обобщению понятия скалярной величины, которое является основным в механике и физике. Система скалярных величин в этом понимании включает в себя, кроме положительной величины, нуль и отрицательную величину. Выбирая в такой системе какую-либо положительную величину l за единицу измерения, выражают все остальные величины системы в виде а = al, где a - действительное число, положительное, отрицательное или равное нулю. Конечно, систему скалярных величин в этом понимании можно охарактеризовать и аксиоматически, не опираясь на понятие числа. Для этого пришлось бы несколько изменить требования 1-10, которыми выше охарактеризовано понятие положительной скалярной величины.

В более общем смысле слова величинами называют векторы, тензоры и другие «не скалярные величины». Такие величины можно складывать, но отношение неравенства (а < b) для них теряет смысл.

В некоторых более отвлечённых математических исследованиях играют известную роль «неархимедовы» величины, которые имеют с обычными скалярными величинами то общее, что для них сохраняются обычные свойства неравенств, но аксиома 9 не выполняется (для скалярных величин в смысле пункта II она сохраняется с оговоркой, что b > 0).

Так как система действительных положительных чисел удовлетворяет перечисленным выше свойствам 1-10, а система всех действительных чисел обладает всеми свойствами скалярных величин, то вполне законно сами действительные числа называть величинами. Это особенно принято при рассмотрении переменных величин. Если какая-либо конкретная величина, например длина l нагреваемого металлического стержня, изменяется во времени, то меняется и измеряющее её число х = l / lo (при постоянной единице измерения lo). Само это меняющееся во времени число х принято называть переменной величиной и говорить, что х принимает в какие-либо последовательные моменты времени t1, t2,… «числовые значения» X1, X2,… В традиционной математической терминологии говорить о «переменных числах» не принято. Однако логичнее такая точка зрения: числа, как и длины, объёмы и т. п., являются частными случаями величины и, как всякие величины, могут быть и переменными, и постоянными. Столь же законно и рассмотрение переменных векторов, тензоров и т. п.

См. также[править | править исходный текст]

Логотип Викисловаря
В Викисловаре есть статья «величина»