Вероятностное пространство

Материал из Википедии — свободной энциклопедии
Перейти к: навигация, поиск

Вероя́тностное простра́нство — понятие, введённое А. Н. Колмогоровым в 30-х годах XX века для формализации понятия вероятности, которое дало начало бурному развитию теории вероятностей как строгой математической дисциплины.

Определение[править | править вики-текст]

Вероятностное пространство — это тройка (иногда обрамляемая угловыми скобками: ), где

Замечания[править | править вики-текст]

  • Элементарные события (элементы ), по определению, — это исходы случайного эксперимента, из которых в эксперименте происходит ровно один.
  • Каждое случайное событие (элемент ) — это подмножество . Говорят, что в результате эксперимента произошло случайное событие , если (элементарный) исход эксперимента является элементом .
    Требование, что является сигма-алгеброй подмножеств , позволяет, в частности, говорить о вероятности случайного события, являющегося объединением счетного числа случайных событий, а также о вероятности дополнения любого события.

Конечные вероятностные пространства[править | править вики-текст]

Простым и часто используемым примером вероятностного пространства является конечное пространство. Пусть  — конечное множество, содержащее элементов.

В качестве сигма-алгебры удобно взять семейство подмножеств . Его часто символически обозначают . Легко показать, что общее число членов этого семейства, то есть число различных случайных событий, как раз равно , что объясняет обозначение.

Вероятность, вообще говоря, можно определять произвольно; однако, в дискретных моделях зачастую нет причин считать, что один элементарный исход чем-либо предпочтительнее другого. В таком случае, естественным способом ввести вероятность является:

,

где , и  — число элементарных исходов, принадлежащих . В частности, вероятность любого элементарного события:

Пример[править | править вики-текст]

Рассмотрим эксперимент с бросанием уравновешенной монеты. Естественным будет взять два события: выпадение герба () и выпадение решки (), то есть Тогда и вероятность можно посчитать следующим образом:

Таким образом определена тройка  — вероятностное пространство, в рамках которого можно рассматривать различные задачи.