Вещество

Материал из Википедии — свободной энциклопедии
Перейти к: навигация, поиск

Вещество в химии — физическая субстанция со специфическим химическим составом. В философском словаре Григория Теплова в 1751 году словом вещество переводился латинский термин Substantia.

Вещество в современной физике как правило понимается как вид материи, состоящий из фермионов или содержащий фермионы наряду с бозонами; обладает массой покоя, в отличие от некоторых типов полей, как например электромагнитное[1]. Обычно (при сравнительно низких температурах и плотностях) вещество состоит из частиц, среди которых чаще всего встречаются электроны, протоны и нейтроны. Последние два образуют атомные ядра, а все вместе — атомы (атомное вещество), из которых — молекулы, кристаллы и т. д. В некоторых условиях, как например в нейтронных звёздах, могут существовать достаточно необычные виды вещества.

Вещество в биологии — материя, образующая ткани организмов, входящая в состав органелл клеток.

Различие между веществом и полем[править | править вики-текст]

Исторически в физике делалось фундаментальное различие между веществом и полем. Поле, в отличие от вещества, мыслилось непрерывным и проницаемым, в то время как частицы вещества представлялись дискретными, или по крайней мере достаточно локализованными. Известные в классической физике поля, такие как электромагнитное и гравитационное, противопоставлялись массивным и иногда электрически заряженным частицам вещества.

Современная физика нивелирует различие между веществом и полем, считая, что все частицы (в том числе и частицы вещества, равно как и частицы, относящиеся к классическим полям) есть квантовые возбуждения различных фундаментальных полей[источник не указан 17 дней], и так или иначе все частицы проявляют такие типично полевые свойства, как делокализованность и подчинение уравнениям движения по сути не отличающимся от полевых (о чём можно говорить как о волновых свойствах всех частиц, в том числе и частиц вещества). Выявление тесной взаимосвязи между полем и веществом привело к углублению представлений о единстве всех форм и структуры физической картины мира.

Впрочем в контексте задач, относящихся к классической физике, а иногда и несколько шире, бывает иногда довольно удобно пользоваться и старой терминологией, хотя в контексте физики в целом она уже и выглядит анахронизмом. Например, если речь идет о взаимодействии заряженных частиц с электромагнитным полем, довольно удобно, следуя традиции называть одно «полем», а другое «веществом», особенно если вещество рассматривается или чисто классически, или — если квантово — то в терминах волновых функций (что позволяет избежать чисто терминологически неудобного пересечения понятий).

Свойства вещества[править | править вики-текст]

Каждому веществу присущ набор специфических свойств — объективных характеристик, которые определяют индивидуальность конкретного вещества и тем самым позволяют отличить его от всех других веществ. К наиболее характерным физико-химическим свойствам относятся константы — плотность, температура плавления, температура кипения, термодинамические характеристики, параметры кристаллической структуры. К основным характеристикам вещества принадлежат его химические свойства.

Классификация веществ[править | править вики-текст]

Количество веществ довольно велико. К известному числу веществ всё время добавляются новые вещества, как открываемые в природе, так и синтезируемые искусственно.

Химическая классификация[править | править вики-текст]

Классификация химических веществ по их делимости на составные части

Традиционная эмпирическая классификация химических веществ основана на их делимости на составные части[2][3][4][5] и не использует представления атомно-молекулярной теории.

Индивидуальные вещества и смеси[править | править вики-текст]

В отечественной литературе принято делить химические вещества на индивидуальные (чистые) вещества (простые и сложные) и их смеси[6][7][8][9]. На сегодняшний день стандартизированная дефиниция индивидуального вещества отсутствует[9]. Согласно одному из вариантов индивидуальным называют вещество, которое нельзя разделить на более простые составные части только физическими методами[8] (речь идёт о принципиальной осуществимости такого разделения, а не о практическом реализации теоретически возможного метода). Второй вариант дефиниции основан на связи постоянства свойств вещества с его чистотой[10]. Для установления свойств вещества оно должно быть возможно более чистым, так как примеси изменяют числовые значения характеризующих вещество физических параметров, в частности, температур фазовых переходов. Вещество с минимально достижимым содержанием примесей (в идеале — нулевым) называют индивидуальным веществом[11]. В физической химии используют не термин «индивидуальное вещество», а его ИЮПАКовский синоним — составляющее вещество[12], понимая под ним любое вещество, которое может быть выделено из системы и существовать вне её[13][14][15][16] (иногда говорят не о составляющих веществах и независимых составляющих веществах — компонентах, — а о компонентах и независимых компонентах[17][18]). Отказ от использования терминов «чистое вещество» и «индивидуальное вещество» исключает произвол, связанный с привязкой этих понятий к степени чистоты вещества и требованиям постоянства его состава и свойств.

Индивидуальные вещества делятся на неорганические и органические вещества:

Неорганические вещества[править | править вики-текст]

Простые вещества — состоят из атомов одного химического элемента:

Сложные вещества — состоят из атомов двух или более химических элементов:

Органические вещества[править | править вики-текст]

Физическая классификация[править | править вики-текст]

Агрегатные состояния[править | править вики-текст]

Все химические вещества в принципе могут существовать в трёх агрегатных состояниях — твёрдом, жидком и газообразном. Так, лёд, жидкая вода и водяной пар — это твёрдое, жидкое и газообразное состояния одного и того же химического вещества — воды H2O. Твёрдая, жидкая и газообразная формы не являются индивидуальными характеристиками химических веществ, а соответствуют лишь различным, зависящим от внешних физических условий состояниям существования химических веществ. Поэтому нельзя приписывать воде только признак жидкости, кислороду — признак газа, а хлориду натрия — признак твёрдого состояния. Каждое из этих (и всех других веществ) при изменении условий может перейти в любое другое из трёх агрегатных состояний.

При переходе от идеальных моделей твёрдого, жидкого и газообразного состояний к реальным состояниям вещества обнаруживается несколько пограничных промежуточных типов, общеизвестными из которых являются аморфное (стеклообразное) состояние, состояние жидкого кристалла и высокоэластичное (полимерное) состояние. В связи с этим часто пользуются более широким понятием «фаза».

В физике рассматривается четвёртое агрегатное состояние вещества — плазма, частично или полностью ионизированное состояние, в котором плотность положительных и отрицательных зарядов одинакова (плазма электронейтральна).

При некоторых условиях (обычно достаточно отличающихся от обычных) те или иные вещества могут переходить в такие особые состояния, как сверхтекучее и сверхпроводящее.

Примечания[править | править вики-текст]

  1. Это различие было в прошлом одним из признаков классификации физических объектов на вещество и «поля», однако на настоящий момент такая классификация устарела: в основе вещества также лежат квантованные поля, а разделение фундаментальных полей на основные классы (сопоставимые со старым делением на вещество и поле) происходит в основном по признаку спина; хотя можно признать, что на некотором глубинном уровне все бозонные фундаментальные поля безмассовы, однако в итоге некоторые из них (например, поле-переносчик слабого взаимодействия) всё же приобретают массу, а механизм же приобретения массы фермионными полями недостаточно ясен, что мешает сделать массивность или безмассовость основой какой-то содержательной классификации, особенно учитывая что вопрос о наличии массы у нейтрино был долгое время открыт и решен лишь экспериментально.
  2. Ходаков Ю. В., Общая и неорганическая химия, 1954, с. 15.
  3. Ходаков Ю. В. и др., Преподавание неорганической химии в средней школе, 1975, с. 26.
  4. Рудзитис Г. Е., Фельдман Ф. Г., Химия для 7—11 классов, 1985, с. 7—15.
  5. Рудзитис Г. Е., Фельдман Ф. Г., Химия. 8 класс, 2011, с. 7—18.
  6. Глинка Н. Л., Общая химия, 2014, с. 15—16.
  7. Рудзитис Г. Е., Фельдман Ф. Г., Химия. 8 класс, 2011, с. 7—8.
  8. 1 2 Вольхин В. В., Общая химия, 2002, с. 23.
  9. 1 2 Жуков С. Т. Основные представления и понятия химии, 2002.
  10. Ходаков Ю. В. и др., Преподавание неорганической химии в средней школе, 1975, с. 30.
  11. Глинка Н. Л., Общая химия, 2014, с. 15.
  12. constituent // IUPAC Gold Book.
  13. Коган В. Е. и др., Физическая химия, 2013, с. 11.
  14. Мечковский Л. А., Блохин А. В., Химическая термодинамика, ч. 1, 2010, с. 127.
  15. Еремин В. В. и др., Основы физической химии, 2005, с. 12.
  16. Герасимов Я. И. и др., Курс физической химии, т. 1, 1970, с. 331.
  17. Сивухин Д. В., Термодинамика и молекулярная физика, 2005, с. 489.
  18. Путилов К. А., Термодинамика, 1971, с. 230.

Литература[править | править вики-текст]

  • Вольхин В. В. Общая химия. Основы химии. — Пермь: Перм. гос. тех. ун-т, 2002. — 512 с. — ISBN 5-88151-309-6.
  • Герасимов Я. И., Древинг В. П., Еремин Е. Н. и др. Курс физической химии / Под общ. ред. Я. И. Герасимова. — 2-е изд. — М.: Химия, 1970. — Т. I. — 592 с.
  • Глинка Н. Л. Общая химия. Учебник для бакалавров / Под ред. В. А. Попкова и А. В. Бабкова. — 19-е изд., перераб. и доп. — М.: Юрайт, 2014. — 910 с. — (Бакалавр. Базовый курс). — ISBN 978-5-9916-3158-7.
  • Еремин В. В., Каргов С. И., Успенская И. А. и др. Основы физической химии. Теория и задачи. — М.: Экзамен, 2005. — 481 с. — (Классический университетский учебник). — ISBN 5-472-00834-4.
  • Коган В. Е., Литвинова Т. Е., Чиркст Д. Э., Шахпаронова Т. С. Физическая химия / Науч. ред. проф. Д. Э. Чиркст. — СПб.: Национальный минерально-сырьевой ун-т «Горный», 2013. — 450 с.
  • Мечковский Л. А., Блохин А. В. Химическая термодинамика. Курс лекций. В двух частях. Часть 1. Феноменологическая термодинамика. Основные понятия, фазовые равновесия. — Минск: БГУ, 2010. — 141 с.
  • Путилов К. А. Термодинамика / Отв. ред. М. Х. Карапетьянц. — М.: Наука, 1971. — 376 с.
  • Рудзитис Г. Е., Фельдман Ф. Г. Химия. Учебное пособие для 7—11 классов вечерней (сменной) средней общеобразовательной школы. В 2-х частях. Часть I. — М.: Просвещение, 1985. — 192 с.
  • Рудзитис Г. Е., Фельдман Ф. Г. Химия. Неорганическая химия. 8 класс. — 15-е изд. — М.: Просвещение, 2011. — 176 с. — ISBN 978-5-09-025532-5.
  • Сивухин Д. В. Общий курс физики. Т. II. Термодинамика и молекулярная физика. — 5-е изд., испр. — М.: ФИЗМАТЛИТ, 2005. — 544 с. — ISBN 5-9221-0601-5.
  • Ходаков Ю. В. Общая и неорганическая химия. Книга для учителя. — М.: Изд. Академии пед. наук РСФСР, 1954. — 524 с.
  • Ходаков Ю. В., Эпштейн Д. А., Глориозов П. А. и др. Преподавание неорганической химии в средней школе. Методическое пособие для учителей. — М.: Просвещение, 1975. — 416 с. — (Методическая библиотека школы).
  • Химия: Справ. изд./ В. Шретер, К.-Х. Лаутеншлегер, Х. Бибрак и др.: Пер. с нем. — М.: Химия, 1989.

См. также[править | править вики-текст]