Визуализация информации

Материал из Википедии — свободной энциклопедии
Перейти к навигации Перейти к поиску
Графическое представление минутного снимка всемирной паутины, демонстрирующее гиперссылки

Визуализация информации — это (интерактивное) изучение визуальных представлений абстрактных данных для усиления человеческого восприятия. Абстрактные данные включают как числовые, так и нечисловые данные, такие как текст и географическая информация. Однако визуализация информации отличается от научной визуализации — «это визуализация информации, при которой пространственное представление выбирается, а в научной визуализации пространственное представление задано»[1].

Обзор[править | править код]

Часть карты интернета в начале 2005, каждая линия представляет два IP-адреса, и некоторую задержку между этими двумя узлами.

Область визуализации информации появилась «из исследований в областях человеко-компьютерного взаимодействия, информатики, графики, визуального проектирования, психологии и бизнес-процессов. Эта область во всё возрастающей степени применяется как критическая компонента в научных исследованиях, электронных библиотеках, data mining, анализе финансовых данных, изучении рынка, управлении производством[en] и изыскании лекарственных средств[en]»[2].

Визуализация информации предполагает, что «визуальное представление и техники взаимодействия извлекают пользу от широкого канала человеческого глаза в мозг, что позволяет пользователю видеть, исследовать и понимать большой объём информации разом. Визуализация информации фокусируется на создании подходов для доставки абстрактной информации интуитивными путями»[3].

Анализ данных является неотъемлемой частью всех прикладных исследований и задач в производстве. Наиболее фундаментальными подходами к анализу данных являются визуализация (гистограммы, диаграммы рассеяния, изображение поверхностей, деревья, графики параллельных координат и т.д.), статистика (проверка статистических гипотез, регрессия, PCA и т.д.), data mining (ассоциативная обработка и др.) и методы машинного обучения (кластеризация, классификация, дерево решений и т.д.). Среди этих подходов визуализация информации или визуальный анализ данных наибольшим образом опирается на когнитивные навыки человеческого анализа и позволяет обнаружение неструктурированной полезной информации, которая ограничена только человеческим воображением и креативностью. Исследователь не обязан изучать какие-либо изощрённые методы, чтобы иметь возможность интерпретировать визуализацию данных. Визуализация информации служит также схемой выдвижения гипотез, которые, как правило, вытекают из последующего формального аналитического рассмотрения, такого как статистическая проверка гипотез.

История[править | править код]

Современное изучение визуализации началось с компьютерной графики, которая «с самого начала использовалась для изучения научных проблем. Однако в ранние дни недостаточная мощность графики часто сдерживала использование. Недавний взлёт визуализации начался в 1987 со специального выпуска журнала Scientific Computing, посвящённого компьютерной графике для визуализации. С тех пор состоялись несколько конференций и симпозиумов, спонсированных Компьютерной Ассоциацией IEEE[en] и ACM SIGGRAPH[en]»[4]. Они были посвящены основным темам визуализации данных, визуализация информации и научной визуализации и более узким темам, таким как объёмная визуализация.

Локализация пространства продуктов[en], предназначенная для показа экономической сложности данной экономики
Дерево экспорта Бенина (2009) по категориям продуктов. Древовидная карта экспорта продуктов является одной из недавнего приложения этого вида визуализации, созданная программойObservatory of Economic Complexity[observatory of economic complexity] в содружестве Гарварда и МТИ

В 1786 году Уильям Плейфэр опубликовал первое графическое представление.

Специфичные методы и техники[править | править код]

Приложения[править | править код]

Визуализация информации имеют приложение в таких областях как[2]

Организации[править | править код]

Достойные внимания академические и индустриальные лаборатории в этой области:

Конференции в этой области по степени важности в исследовании визуализации данных[6]

  • IEEE Visualization[en]: Ежегодная международная конференция по научной визуализации, визуализации информации и визуального анализа. Конференция проводится в октябре.
  • ACM SIGGRAPH: Ежегодная международная конференция по компьютерной графике, проводимая ACM SIGGRAPH. Дата конференции не постоянна.
  • EuroVis: Ежегодная общеевропейская конференция по визуализации данных, которую проводит Рабочая Группа Еврографики по Визуализации Данных (англ. Eurographics Working Group on Data Visualization) и поддерживается IEEE Комитетом по Визуализации и Технической Графике (англ. IEEE Visualization and Graphics Technical Committee, IEEE VGTC). Конференция обычно проводится в июне.
  • Конференция по Человеческим Факторам в Вычислительных Системах (англ. Conference on Human Factors in Computing Systems): Ежегодная международная конференция по человеко-компьютерному взаимодействию, организуемая ACM SIGCHI[en]. Конференция обычно проводится в апреле или мае.
  • Eurographics: Ежегодная общеевропейская конференция по компьютерной графике, организуемая Европейской Ассоциацией по Компьютерной Графике (англ. European Association for Computer Graphics). Конференция обычно проводится в апреле или мае.
  • PacificVis: Ежегодный симпозиум по визуализации, проводимый в Азиатско-тихоокеанском регионе. Симпозиум спонсируется IEEE Комитетом по Визуализации и Технической Графике. Конференция обычно проводится в марте или апреле.

Примечания[править | править код]

  1. Tamara Munzner. Process and Pitfalls in Writing Information Visualization Research Papers. www.cs.ubc.ca. Дата обращения 9 апреля 2018.
  2. 1 2 Bederson, Shneiderman, 2003.
  3. Thomas, Cook, 2005, с. 30.
  4. G. Scott Owen (1999). History of Visualization Архивная копия от 8 октября 2012 на Wayback Machine. Accessed Jan 19, 2010.
  5. DOI:10.1177/1460458212465213
  6. Robert Kosara. A Guide to the Quality of Different Visualization Venues. eagereyes (11 November 2013). Дата обращения 7 апреля 2017.

Литература[править | править код]

Литература для дальнейшего чтения[править | править код]

Ссылки[править | править код]